Glioblastoma is a malignant brain tumor with poor prognosis that rapidly acquires resistance to available clinical treatments. The herpes simplex virus thymidine kinase/ganciclovir (HSVtk/GCV) system produces the selective elimination of HSVtk-positive cells and is a candidate for preclinical testing against glioblastoma via its ability to regulate proliferation and differentiation. Therefore, in this study, we aimed to establish a plasmid encoding the HSVtk/GCV system driven by a glial fibrillary acidic protein (GFAP) promoter and verify its possibility of neural differentiation of glioblastoma cell line under the GCV challenge. Four stable clones-N2A-pCMV-HSVtk, N2A-pGFAP-HSVtk, U251-pCMV-HSVtk, and U251-pGFAP-HSVtk-were established from neuronal N2A and glioblastoma U251 cell lines. In vitro GCV sensitivity was assessed by MTT assay for monitoring time- and dosage-dependent cytotoxicity. The capability for neural differentiation in stable glioblastoma clones during GCV treatment was assessed by performing immunocytochemistry for nestin, GFAP, and βIII-tubulin. Under GFAP promoter control, the U251 stable clone exhibited GCV sensitivity, while the neuronal N2A clones were nonreactive. During GCV treatment, cells underwent apoptosis on day 3 and dying cells were identified after day 5. Nestin was increasingly expressed in surviving cells, indicating that the population of neural stem-like cells was enriched. Lower levels of GFAP expression were detected in surviving cells. Furthermore, βIII-tubulin-positive neuron-like cells were identified after GCV treatment. This study established pGFAP-HSVtk-P2A-EGFP plasmids that successfully ablated GFAP-positive glioblastoma cells, but left neuronal N2A cells intact. These data suggest that the neural differentiation of glioblastoma cells can be promoted by treatment with the HSVtk/GCV system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8351974 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0253008 | PLOS |
Indian Dermatol Online J
December 2024
Financial Research and Executive Insights, Everest Group, Gurugram, Haryana, India.
Background: Artificial intelligence (AI) is revolutionizing healthcare by enabling systems to perform tasks traditionally requiring human intelligence. In healthcare, AI encompasses various subfields, including machine learning, deep learning, natural language processing, and expert systems. In the specific domain of onychology, AI presents a promising avenue for diagnosing nail disorders, analyzing intricate patterns, and improving diagnostic accuracy.
View Article and Find Full Text PDFPol J Radiol
December 2024
Nuclear Fuel Research School, Nuclear Science and Technology Research Institute, Tehran, Iran.
Purpose: This study explored the use of computer-aided diagnosis (CAD) systems to enhance mammography image quality and identify potentially suspicious areas, because mammography is the primary method for breast cancer screening. The primary aim was to find the best combination of preprocessing algorithms to enable more precise classification and interpretation of mammography images because the selected preprocessing algorithms significantly impact the effectiveness of later classification and segmentation processes.
Material And Methods: The study utilised the mini-MIAS database of mammography images and examined the impact of applying various preprocessing method combinations to differentiate between malignant and benign breast lesions.
Mater Today Bio
December 2024
Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
Alzheimer's disease (AD) is characterized by progressive cognitive decline due to neuronal damage and impaired neurogenesis. Preserving neuronal integrity and stimulating neurogenesis are promising therapeutic strategies to combat AD-related cognitive dysfunction. In this study, we synthesized metformin carbon dots (CMCDs) using a hydrothermal method with metformin hydrochloride and citric acid as precursors.
View Article and Find Full Text PDFBioact Mater
April 2025
Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
The mammalian brain has an extremely limited ability to regenerate lost neurons and to recover function following ischemic stroke. A biomaterial strategy of slowly-releasing various regeneration-promoting factors to activate endogenous neurogenesis represents a safe and practical neuronal replacement therapy. In this study, basic fibroblast growth factor (bFGF)-Chitosan gel is injected into the stroke cavity.
View Article and Find Full Text PDFAm J Stem Cells
December 2024
Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences Khorramabad, Iran.
Development and maintenance of the nervous system are governed by a scheduled cell death mechanism known as apoptosis. Very much how neurons survive and function depends on the degree of death in differentiating pseudo-neuronal cells produced from neural stem cells. Different inducers can affect the degree of death in these cells: hormones, medicines, growth factors, and others.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!