THRAP3 depletion reduces PPARγ mRNA and anti-inflammatory action in 3T3-L1 adipocytes.

J Mol Endocrinol

Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.

Published: September 2021

Peroxisome proliferator-activated receptor γ (PPARγ) is the master transcriptional regulator of adipocytes and the cellular target of thiazolidinedione (TZD) drugs. Suppression of pro-inflammatory actions, including pro-inflammatory gene expression and lipolysis in adipocytes, contributes to PPARγ-mediated anti-diabetic effects of TZDs. However, adverse side effects largely limited the clinical use of TZDs, despite their potent insulin-sensitizing effects. Therefore, it is important to understand how PPARγ is regulated. Thyroid hormone receptor-associated protein 3 (THRAP3) was previously reported to promote diabetic gene expression by acting as a transcriptional coregulator of PPARγ in adipocytes. Therefore, we tested if THRAP3 modulated anti-inflammatory functions of PPARγ in 3T3-L1 adipocytes. THRAP3 depletion increased basal and tumor necrosis factor α (TNFα)-induced lipolysis, pro-inflammatory gene expression, and phosphorylation of extracellular signal-regulated kinases (ERKs), suggesting elevated pro-inflammatory response after THRAP3 depletion in adipocytes. Moreover, TZD-mediated suppression of TNFα-induced lipolysis, pro-inflammatory gene expression, and ERK phosphorylation was attenuated or alleviated after THRAP3 depletion. Interestingly, the mRNA and protein levels of PPARγ were greatly reduced in THRAP3-depleted adipocytes. Actinomycin D treatment revealed that the stability of PPARγ mRNA was greatly reduced by THRAP3 depletion in adipocytes. Thus, in addition to modulating PPARγ function, THRAP3 may directly regulate the transcript of PPARγ in differentiated adipocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1530/JME-20-0334DOI Listing

Publication Analysis

Top Keywords

thrap3 depletion
20
gene expression
16
pro-inflammatory gene
12
pparγ
9
adipocytes
9
thrap3
8
pparγ mrna
8
3t3-l1 adipocytes
8
tnfα-induced lipolysis
8
lipolysis pro-inflammatory
8

Similar Publications

THRAP3 depletion reduces PPARγ mRNA and anti-inflammatory action in 3T3-L1 adipocytes.

J Mol Endocrinol

September 2021

Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.

Peroxisome proliferator-activated receptor γ (PPARγ) is the master transcriptional regulator of adipocytes and the cellular target of thiazolidinedione (TZD) drugs. Suppression of pro-inflammatory actions, including pro-inflammatory gene expression and lipolysis in adipocytes, contributes to PPARγ-mediated anti-diabetic effects of TZDs. However, adverse side effects largely limited the clinical use of TZDs, despite their potent insulin-sensitizing effects.

View Article and Find Full Text PDF

A role for alternative splicing in circadian control of exocytosis and glucose homeostasis.

Genes Dev

August 2020

Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.

The circadian clock is encoded by a negative transcriptional feedback loop that coordinates physiology and behavior through molecular programs that remain incompletely understood. Here, we reveal rhythmic genome-wide alternative splicing (AS) of pre-mRNAs encoding regulators of peptidergic secretion within pancreatic β cells that are perturbed in and β-cell lines. We show that the RNA-binding protein THRAP3 (thyroid hormone receptor-associated protein 3) regulates circadian clock-dependent AS by binding to exons at coding sequences flanking exons that are more frequently skipped in clock mutant β cells, including transcripts encoding () and ().

View Article and Find Full Text PDF

Serine-arginine-rich (SR) or SR-like splicing factors interact with exon junction complex proteins during pre-mRNA processing to promote mRNA packaging into mature messenger ribonucleoproteins (mRNPs) and to dictate mRNA stability, nuclear export, and translation. The SR protein family is complex, and while many classical SR proteins have well-defined mRNA processing functions, those of other SR-like proteins is unclear. Here, we show that depletion of the homologous non-classical serine-arginine-rich (SR) splicing factors Bcl2-associated transcription factor (Btf or BCLAF) and thyroid hormone receptor-associated protein of 150 kDa (TRAP150) causes mitotic defects.

View Article and Find Full Text PDF

The spliceosomal factor TRAP150 is essential for pre-mRNA splicing in vivo and, when overexpressed, it enhances splicing efficiency. In this study, we found that TRAP150 interacted with the cleavage and polyadenylation specificity factor (CPSF) and co-fractionated with CPSF and RNA polymerase II. Moreover, TRAP150 preferentially associated with the U1 small ribonucleoprotein (snRNP).

View Article and Find Full Text PDF

Wilms' tumor 1-associating protein (WTAP) is a putative splicing regulator that is thought to be required for cell cycle progression through the stabilization of cyclin A2 mRNA and mammalian early embryo development. To further understand how WTAP acts in the context of the cellular machinery, we identified its interacting proteins in human umbilical vein endothelial cells and HeLa cells using shotgun proteomics. Here we show that WTAP forms a novel protein complex including Hakai, Virilizer homolog, KIAA0853, RBM15, the arginine/serine-rich domain-containing proteins BCLAF1 and THRAP3, and certain general splicing regulators, most of which have reported roles in post-transcriptional regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!