Background: Primary Sjögren Syndrome (pSS) is a chronic autoimmune disease characterized by epithelial atrophy, mononuclear infiltration in exocrine glands resulting in the defective function of these glands. In pSS, atrophy of the epithelium is caused by an increased amount of apoptosis.
Objective: The main aim of this study is to investigate the role of the apoptosis-related factors by studying Bcl-2, Fas and FasL expression in relation to the extent of inflammation as well as the effect of therapy on the expression of these mediators.
Methods: In pSS patients (n=62) documented for their serological and clinical features, Fas, FasL and Bcl-2 plasma levels were assessed using enzyme-linked immunosorbent assays. In the same context, we investigated their expression by immunohistochemistry analysis in the labial salivary glands samples in association with the extent of inflammation.
Results: Interestingly, our results indicated that in pSS patients, the plasmatic Bcl-2, Fas and FasL levels, which appeared to be associated with the severity of inflammation and were significantly elevated in comparison to the healthy controls. Moreover, a significant decrease in all these factors was observed in patients after combined corticosteroids-hydroxychloroquine therapy. Importantly, we report a strong positive correlation between Bcl-2 and NO levels. The immunohistochemical staining reveals a strong Bcl-2 expression in infiltrating mononuclear cells and a total absence in the acinar cells. The Bcl-2 level varies according to the severity of pathology. However, the expression of Fas and FasL was less important and predominantly localized in infiltrating mononuclear cells.
Conclusion: Our current study highlights the involvement of Bcl-2, Fas and FasL in pSS glands injury. These factors may act as useful predictor markers of a clinical course in pSS, suggesting a novel approach in the pSS patients monitoring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1871530321666210809155147 | DOI Listing |
Discov Oncol
January 2025
Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India.
Cancer, one of the deadliest diseases, has remained the epicenter of biological research for more than seven decades. Yet all the efforts for a perfect therapeutic cure come with certain limitations. The use of medicinal plants and their phytochemicals as therapeutics has received much attention in recent years.
View Article and Find Full Text PDFBrain Behav Immun
January 2025
Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin 150081, Heilongjiang, PR China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150081, Heilongjiang, PR China. Electronic address:
It has been reported that the nervous system can regulate immune reactions through various mechanisms. However, the role of splenic sympathetic nerve activity in the autoimmune reactions during the pathogenesis of experimental autoimmune encephalomyelitis (EAE) remained unclear. Here, we blocked the activity of the splenic sympathetic nerve and found that the number of adaptive immune cells, such as CD4 T cells, CD8 T cells and B cells, were upregulated.
View Article and Find Full Text PDFbioRxiv
November 2024
Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA.
While inputs regulating CD4 T helper cell (Th) differentiation are well-defined, the integration of downstream signaling with transcriptional and epigenetic programs that define Th-lineage identity remain unresolved. PI3K signaling is a critical regulator of T cell function; activating mutations affecting PI3Kδ result in an immunodeficiency with multiple T cell defects. Using mice expressing activated-PI3Kδ, we found aberrant expression of proinflammatory Th1-signature genes under Th2-inducing conditions, both and .
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
Background: Fibroblast activation protein (FAP)-targeted radioligand therapy, with immunomodulatory effects, has shown efficacy in both preclinical and clinical studies. We recently reported on a novel dimeric FAP-targeting radiopharmaceutical, Ga/Lu-DOTA-2P(FAPI), which demonstrated increased tumor uptake and prolonged retention in various cancers. However, further exploration is required to understand the therapeutic efficacy and underlying mechanisms of combining Ga/Lu-DOTA-2P(FAPI) radioligand therapy with PD-1/PD-L1 immunotherapy.
View Article and Find Full Text PDFToxics
December 2024
Laboratory of Neuropharmacology and Epigenetics, Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Krakow, Poland.
Benzophenone-3 (BP-3), commonly used as a UV filter in personal care products and as a stabilizer, is an alleged endocrine disruptor with potential neurodevelopmental impacts. Despite its abundance in the environment, the studies on its effect on brain development are scarce, especially in terms of multigenerational impact. In this work, for the first time, we examined neurotoxic and pro-apoptotic effects of BP-3 on mouse brain regions (cerebral cortex and hippocampus) in both the first (F) and second (F) generations after maternal exposure to environmentally relevant BP-3 levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!