Background: The reported binding mode of ibuprofen in the COX-2 binding site indicated that the carboxylic group binds with Arg-120 and Tyr-355 at the entrance of the cyclooxygenase channel and does not extend into the pocket. This accounted for the non-selectivity of ibuprofen. Based on this fact, we assumed that extending the length of the carboxylic acid moiety in ibuprofen and adding more bulky rigid groups as well as bulky groups carrying H-bonding functions might increase the selectivity and reduce the side effects of ibuprofen while maintaining its analgesic and anti-inflammatory activities.

Objective: In this work, four series of ibuprofen derivatives were designed and prepared. The compounds were designed by increasing the length of the carboxylate group along with the incorporation of large hydrophobic groups.

Methods: Four series of ibuprofen derivatives were synthesized starting from ibuprofen. Their chemical structure was confirmed by spectral data. All the compounds were tested for their COX inhibitory activity.

Results: The best COX-2 activity and selectivity were obtained with compounds 5c and 5d, which were subjected to further in vivo testing (carrageenan-induced paw edema, rat serum PGE2, TNF- α and IL-6, hot plate latency test) to investigate their anti-inflammatory and analgesic activities as well as their effects on the gastric mucosa. The anti-inflammatory activity of both compounds was comparable to that of ibuprofen, diclofenac, and indomethacin. Both compounds suppressed the production of PGE2 as well as the rat serum concentrations of both TNF-α and IL-6. This potent antiinflammatory and analgesic behavior was not accompanied by any effect on the gastric mucosa. Docking simulation studies of the two compounds explained the higher selectivity for the COX-2 enzyme.

Conclusion: Potent and selective ibuprofen derivatives can be successively obtained by extending the length of the carboxylic acid moiety in ibuprofen and adding more bulky rigid groups as well as bulky groups with H-bonding functions.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1573406417666210809162636DOI Listing

Publication Analysis

Top Keywords

ibuprofen derivatives
16
ibuprofen
11
tnf-α il-6
8
extending length
8
length carboxylic
8
carboxylic acid
8
acid moiety
8
moiety ibuprofen
8
ibuprofen adding
8
adding bulky
8

Similar Publications

Mollugin Derivatives as Anti-Inflammatory Agents: Design, Synthesis, and NF-κB Inhibition.

Chem Biol Drug Des

December 2024

Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China.

Nuclear factor κB (NF-κB) is a key inducible transcription factor that controls a large number of genes involved in inflammatory and immune processes. The entire inflammation-mediated process uses NF-κB as a hub, and inflammatory gene transcription and expression can be decreased by blocking the NF-κB signaling pathway, thereby reducing inflammatory damage. Therefore, the inhibition of this pathway is an important therapeutic target for the treatment of various types of inflammation.

View Article and Find Full Text PDF

Efficient Removal of Pharmaceutical Contaminants from Aqueous Solution Using Plant-Derived Biosurfactant-Assisted Dissolved Air Flotation Process.

Langmuir

December 2024

Department of Civil Engineering, Faculty of Engineering, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari Post, Coimbatore 641021, Tamil Nadu, India.

This study investigates the removal of ibuprofen and diclofenac from aqueous media via a fully pressurized dissolved air flotation system, enhanced by fenugreek-derived saponin, a plant-based biosurfactant. The use of fenugreek saponin in flotation processes distinguishes this work from previous studies as it offers an ecofriendly and efficient alternative to chemical surfactants. The biosurfactant's surface-active properties were confirmed through FT-IR, UV-vis spectroscopy identified key functional groups and structural characteristics of the saponin, NMR provided molecular insights into its bioactive components, and surface tension analyses demonstrated its ability to reduce interfacial tension, indicating effective surfactant behavior.

View Article and Find Full Text PDF

Background: Schott and Hook.f. are two commonly found vegetable species of the genus , found mainly in the Asian region.

View Article and Find Full Text PDF

Structural characterization, cytotoxicity, antibiofilm activity, and synergistic potential with molecular docking analysis of ibuprofen-derived hydrazide against bacterial pathogens.

Microb Pathog

December 2024

State University of Ceará, Northeast Network of Biotechnology Program (RENORBIO), Campus Itaperi, Fortaleza, Brazil; Course of Chemistry, State University of Vale Acaraú, Sobral, Ceará, Brazil; Postgraduate in Natural Sciences, Sciences and Technology Center, State University of Ceará, Fortaleza, CE, Brazil. Electronic address:

The study investigates the synthesis, characterization, and antibacterial activity of an ibuprofen-derived hydrazide (HIDZ). It was synthesized and characterized using NMR spectroscopy, DFT Calculations, and ADMET studies. Furthermore, HIDZ cytotoxicity on L929 cells was evaluated using the MTT reduction assay.

View Article and Find Full Text PDF

Background: Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by severe pain, inflammation, and joint deformity. Currently, it affects 1% of the population, with a projection to exceed 23 million cases by 2030. Despite significant advancements, non-steroidal anti-inflammatory drugs (NSAIDs), the first line of treatment, are associated with a range of adverse effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!