and Fusarium species are emerging opportunistic pathogens, causing invasive fungal diseases in humans, particularly in immunocompromised patients. Biofilm-related infections are associated with increased morbidity and mortality. Here, we assessed the ability of Scedosporium apiospermum and Fusarium solani species complex (FSSC) isolates to form biofilms and evaluated the efficacy of deoxycholate amphotericin B (D-AMB), liposomal amphotericin B (L-AMB), and voriconazole (VRC), alone or in combination, against mature biofilms. Biofilm formation was assessed by safranin staining and spectrophotometric measurement of optical density. Planktonic and biofilm damage was assessed by XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide salt] reduction assay. Planktonic cell and biofilm MICs were determined as the minimum concentrations that caused ≥50% fungal damage compared to untreated controls. The combined activity of L-AMB (0.5 to 32 mg/liter) and VRC (0.125 to 64 mg/liter) against biofilms was determined by the checkerboard microdilution method and analyzed by the Bliss independence model. Biofilm MICs of D-AMB and L-AMB against S. apiospermum isolates were 1 and 2 mg/liter and against FSSC isolates were 0.5 and 1 mg/liter, respectively. Biofilm MICs of VRC against S. apiospermum and FSSC were 32 mg/liter and >256 mg/liter, respectively. Synergistic effects were observed at 2 to 4 mg/liter of L-AMB combined with 4 to 16 mg/liter of VRC against S. apiospermum biofilms (mean Δ ± standard error, 17% ± 3.7%). Antagonistic interactions were found at 0.5 to 4 mg/liter of L-AMB combined with 0.125 to 16 mg/liter of VRC against FSSC isolates, at -28% ± 2%. D-AMB and L-AMB were more efficacious against S. apiospermum and FSSC biofilms than VRC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8522719 | PMC |
http://dx.doi.org/10.1128/AAC.00638-21 | DOI Listing |
Sci Rep
January 2025
Section of Ecological Plant Protection, University of Kassel, 37213, Witzenhausen, Germany.
From 2016 to 2019, 128 organic and conventional spring and winter pea fields in Germany were surveyed to determine the effects of cropping history and pedo-climatic conditions on pea root health, the diversity of Fusarium and Didymella communities and their collective effect on pea yield. Roots generally appeared healthy or showed minor disease symptoms despite the frequent occurrence of 4 Didymella and 14 Fusarium species. Soil pH interacted with the occurrence of the Fusarium oxysporum species complex (FOSC) and F.
View Article and Find Full Text PDFBraz J Microbiol
January 2025
Federal University of Ceará Fortaleza, Ceará, Brazil.
Fusarium keratitis (FK) is an important clinical condition that can lead to blindness and eye loss, and is most commonly caused by the Fusarium solani species complex (FSSC). This study evaluated the susceptibility of planktonic cells and biofilms of FSSC (n = 7) and non-FSSC (n = 7) isolates obtained from patients with keratitis from a semi-arid tropical region to amphotericin B (AMB), natamycin (NAT), voriconazole (VRZ), efinaconazole (EFZ), and luliconazole (LCZ). Analysis of clinical data showed that trauma was the most common risk factor for FK patients.
View Article and Find Full Text PDFMycoses
January 2025
Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
Background: Accurate identification of Fusarium species requires molecular identification. Treating fusariosis is challenging due to widespread antifungal resistance, high rates of treatment failure, and insufficient information relating antifungal susceptibility to the clinical outcome. Despite recent outbreaks in Mexico, there is limited information on epidemiology and antifungal susceptibility testing (AST).
View Article and Find Full Text PDFMed Mycol
November 2024
Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India.
Owing to their inherent resistance to different classes of antifungals, early identification of Fusarium spp. is crucial. In this study, 10 clinical isolates were included from patients with invasive fusariosis involving lungs, sinuses, or both.
View Article and Find Full Text PDFPlant Dis
October 2024
University of California Davis, Plant Pathology, 1 Shields Ave, Davis, California, United States, 95616;
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!