The acquisition of hemin iron from hemoglobin-haptoglobin (Hb-Hp) by Corynebacterium diphtheriae requires the iron-regulated surface proteins HtaA, ChtA, and ChtC and the recently identified Hb-Hp-binding protein, HbpA. We previously showed that a purified form of HbpA (HbpA-S), lacking the C-terminal region, was able to bind Hb-Hp. In this study, we show that the C-terminal region of HbpA significantly enhances binding to Hb-Hp. A purified form of HbpA that includes the C-terminal domain (HbpA-FL) exhibits much stronger binding to Hb-Hp than HbpA-S. Size exclusion chromatography (SEC) showed that HbpA-FL as well as HtaA-FL, ChtA-FL, and ChtC-FL exist as high-molecular-weight complexes, while HbpA-S is present as a monomer, indicating that the C-terminal region is required for formation of large aggregates. Growth studies showed that expression of HbpA-FL in the Δ mutant restored wild-type levels of growth in low-iron medium that contained Hb-Hp as the sole iron source, while HbpA-S failed to complement the Δ mutant. Protein localization studies in C. diphtheriae showed that HbpA-FL is present in both the supernatant and membrane fractions and that the C-terminal region is required for membrane anchoring. Purified HbpA-FL was able to enhance growth of the Δ mutant when added to culture medium that contained Hb-Hp as a sole iron source, suggesting that secreted HbpA is involved in the use of hemin iron from Hb-Hp. These studies extend our understanding of this novel Hb-Hp binding protein in this important human pathogen. Hemoproteins, such as Hb, are an abundant source of iron in humans and are proposed to be required by numerous pathogens to cause disease. In this report, we expand on our previous studies in further defining the role of HbpA in hemin iron acquisition in C. diphtheriae. HbpA is unique to C. diphtheriae and appears to function unlike any previously described bacterial iron-regulated Hb- or Hb-Hp-binding protein. HbpA is both secreted and present in the membrane and exists as a large aggregate that enhances its ability to bind Hb-Hp and promote hemin iron uptake. Current studies with HbpA will increase our understanding of iron transport systems in C. diphtheriae.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8508117 | PMC |
http://dx.doi.org/10.1128/JB.00196-21 | DOI Listing |
Blood
December 2024
Winship Cancer Institute, Emory University, Atlanta, Georgia, United States.
We previously demonstrated that reduced intrinsic electron transport chain (ETC) activity predicts and promotes sensitivity to the BCL-2 antagonist, venetoclax (Ven) in multiple myeloma (MM). Heme, an iron-containing prosthetic group, and metabolite is fundamental to maintaining ETC activity. Interrogation of the CD2 subgroup of MM from the CoMMpass trial (NCT01454297), which can be used as a proxy for Ven-sensitive MM (VS MM), shows reduced expression of the conserved heme biosynthesis pathway gene signature.
View Article and Find Full Text PDFNat Commun
December 2024
Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
Iron-based nanozymes, recognized for their biocompatibility and peroxidase-like activities, hold promise as catalysts in tumor therapy. However, their concurrent catalase-like activity undermines therapeutic efficacy by converting hydrogen peroxide in tumor tissues into oxygen, thus diminishing hydroxyl radical production. Addressing this challenge, this study introduces the hemin-cysteine-Fe (HCFe) nanozyme, which exhibits exclusive peroxidase-like activity.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
November 2024
College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China. Electronic address:
Hemoglobin (Hb) releases during hemorrhaging and causes oxidative damage, further exacerbates the development of multiple diseases. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that regulates cellular defenses against toxic and oxidative challenges. However, the regulation mechanism of Nrf2 in Hb-induced oxidative stress remains unclear in teleost.
View Article and Find Full Text PDFFish Shellfish Immunol
November 2024
Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China. Electronic address:
The liver is a key site for the removal of cell-free hemin during hemolysis. However, the mechanism underlying liver damage caused by hemolysis in teleost hemolytic disorderss remains unclear. In this study, the hemin incubation of grass carp liver cells (L8824) and phenylhydrazine (PHZ) injection were employed to simulate in vitro and in vivo hemolysis models.
View Article and Find Full Text PDFHematol Transfus Cell Ther
December 2024
Faculty of Medical Technology, Kobe Tokiwa University, Kobe, Hyōgo, Japan; Life Science Center, Kobe Tokiwa University, Kobe, Hyōgo, Japan.
Background: In transfusion-related iron overload, macrophage/reticuloendothelial cells are the first site of haem-derived iron accumulation. The prevention of haem-induced cytotoxicity in macrophages may represent a target for iron overload treatment. Deferasirox, an oral iron chelator, has been used to treat transfusion-related iron overload however, low adherence to the therapy is an issue.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!