Adsorption of chiral molecules on heterogeneous catalysts is a simple approach for inducing an asymmetric environment to enable enantioselective reactivity. Although the concept of chiral induction is straightforward, its practical utilization is far from simple, and only a few examples toward the successful chiral induction by surface anchoring of asymmetric modifiers have been demonstrated so far. Elucidating the factors that lead to successful chiral induction is therefore a crucial step for understanding the mechanism by which chirality is transferred. Herein, we identify the adsorption geometry of OH-functionalized N-heterocyclic carbenes (NHCs), which are chemical analogues to chiral modifiers that successfully promoted α-arylation reactions once anchored on Pd nanoparticles. Polarized near-edge X-ray absorption fine structure (NEXAFS) measurements on Pd(111) revealed that NHCs that were associated with low enantioselectivity were characterized with a well-ordered structure, in which the imidazole ring was vertically positioned and the OH-functionalized side arms were flat-lying. OH-functionalized NHCs that were associated with high enantioselectivity revealed a disordered/flexible adsorption geometry, which potentially enabled better interaction between the OH group and the prochiral reactant.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9234974PMC
http://dx.doi.org/10.1021/acs.langmuir.1c01199DOI Listing

Publication Analysis

Top Keywords

adsorption geometry
12
chiral induction
12
geometry oh-functionalized
8
n-heterocyclic carbenes
8
successful chiral
8
nhcs associated
8
chiral
6
influence n-substituents
4
adsorption
4
n-substituents adsorption
4

Similar Publications

2,4-Dichlorophenoxyacetic Acid in the Gas and Crystal Phases and Its Intercalation in Montmorillonite-An Experimental and Theoretical Study.

Molecules

January 2025

Instituto Andaluz de Ciencias de la Tierra (IACT-CSIC), Consejo Superior de Investigaciones Científicas, Av. de las Palmeras 4, 18100 Armilla, Granada, Spain.

Many properties of 2,4-dichlorophenoxyacetic acid (2,4-D) depend on its molecular environment, such as whether it is an isolated molecule, a dimer, or in a crystalline state. The molecular geometry, conformational analysis, and vibrational spectrum of 2,4-D were theoretically calculated using Density Functional Theory (DFT) methods. A new slightly more stable conformer was found, which is different to those previously reported.

View Article and Find Full Text PDF

The distribution of substitutional aluminum (Al) atoms in zeolites affects molecular adsorbate geometry, catalytic activity, and shape and size selectivity. Accurately determining Al positions has been challenging. We used synchrotron resonant soft x-ray diffraction (RSXRD) at multiple energies near the Al K-edge combined with molecular adsorption techniques to precisely locate "single Al" and "Al pairs" in a commercial H-ZSM-5 zeolite.

View Article and Find Full Text PDF

The exact moment method for the determination of the dispersion tensor in retentive porous media has been adopted to compute the dispersion coefficients, the plate height curves and the kinetic performance factors of eight different 3D printable stationary phases based on triply periodic minimal surfaces (TPMS). The two cases in which the stationary phase is impermeable (hydrodynamic dispersion) or superficially retentive have been analyzed in detail. The Carman-Kozeny relationship between permeability K, hydraulic diameter d and hydrodynamic tortuosity τ holds true for all the geometries investigated with a unique shape coefficient K.

View Article and Find Full Text PDF

Enriching the structural diversity of metal-organic frameworks (MOFs) is of great importance in developing functional porous materials with specific properties. New MOF structures can be accessed through the rational design of organic linkers with diverse geometric conformations, and their structural complexity can be enhanced by choosing linkers with reduced symmetry. Herein, a series of Zr-based MOFs with unprecedented topologies were developed through a linker desymmetrization and conformation engineering approach.

View Article and Find Full Text PDF

Conventional versus Unconventional Oxygen Reduction Reaction Intermediates on Single Atom Catalysts.

ACS Appl Mater Interfaces

January 2025

Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, Barcelona 08028, Spain.

The oxygen reduction reaction (ORR) stands as a pivotal process in electrochemistry, finding applications in various energy conversion technologies such as fuel cells, metal-air batteries, and chlor-alkali electrolyzers. Hereby, a comprehensive density functional theory (DFT) investigation is presented into the proposed conventional and unconventional ORR mechanisms using single-atom catalysts (SACs) supported on nitrogen-doped graphene (NG) as model systems. Several reaction intermediates have been identified that appear to be more stable than the ones postulated in the conventional mechanism, which follows the *OOH, *O, and *OH intermediates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!