African swine fever is an acute, haemorrhagic fever and contagious disease of pigs caused by African swine fever virus (ASFV), which has a great impact on the pig farming industry and related international trade. Understanding the response processes of various tissues in pigs after ASFV infection may help to address current major concerns, such as the exploration of key genes for vaccine development, the cooperative mechanism of the host response and the possibility of establishing active herd immunity. ASFV is able to infect core tissues and is associated with acute death. RNA and protein samples were obtained and verified from five tissues, including the lung, spleen, liver, kidney and lymph nodes. Multiple duplicate samples were quantitatively analyzed by corresponding transcriptomic and proteomic comparison. The results showed that different tissues cooperated in responses to ASFV infection and coordinated the defence against ASFV in the form of an inflammatory cytokine storm and interferon activation. The lung and spleen were mainly involved (dominant) in the innate immune response pathway; the liver and kidney were involved in the metabolic regulatory pathway and the inflammatory response; and the lymph nodes cooperated with the liver to complete energy metabolism regulation. The key pathways and responsive genes in each tissue of the contracted pigs were comprehensively mapped by infectomics, providing further evidence to investigate the complicated tie between ASFV and host cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9544764 | PMC |
http://dx.doi.org/10.1111/tbed.14283 | DOI Listing |
Viruses
January 2025
Section for Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark.
Introduction of African swine fever virus (ASFV) into pig herds can occur via virus-contaminated feed or other objects. Knowledge about ASFV survival in different matrices and under different conditions is required to understand indirect virus transmission. Maintenance of ASFV infectivity can occur for extended periods outside pigs.
View Article and Find Full Text PDFViruses
December 2024
Department of Biological Sciences and Biotechnology, School of Life Sciences, Botswana International University of Science and Technology, Private Bag 16, Palapye 10071, Botswana.
Cell culture underpins virus isolation and virus neutralisation tests, which are both gold-standard diagnostic methods for foot-and-mouth disease (FMD). Cell culture is also crucial for the propagation of inactivated foot-and-mouth disease virus (FMDV) vaccines. Both primary cells and cell lines are utilised in FMDV isolation and propagation.
View Article and Find Full Text PDFPathogens
January 2025
National Reference Laboratory (NRL) for Swine Fever, Istituto Zooprofilattico Sperimentale dell' Umbria e delle Marche "Togo Rosati", 06126 Perugia, Italy.
African swine fever (ASF), characterized by high mortality rates in infected animals, remains a significant global veterinary and economic concern, due to the widespread distribution of ASF virus (ASFV) genotype II across five continents. In this study, ASFV strains collected in Italy during 2022-2023 from two geographical clusters, North-West (Alessandria) and Calabria, were fully sequenced. In addition, an in vivo experiment in pigs was performed.
View Article and Find Full Text PDFVet Sci
January 2025
State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730030, China.
The vesicular stomatitis virus (VSV)-vectored African swine fever virus (ASFV) vaccine can induce efficient immune response, but the potential mechanism remains unsolved. In order to investigate the efficacy of recombinant viruses (VSV-p35, VSV-p72)-mediated dendritic cells (DCs) maturation and the mechanism of inducing T-cell immune response, the functional effects of recombinant viruses on DC activation and target antigens presentation were explored in this study. The results showed that surface-marked molecules (CD80, CD86, CD40, and MHC-II) and secreted cytokines (IL-4, TNF-α, IFN-γ) were highly expressed in the recombinant virus-infected DCs.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
Background/objectives: African swine fever (ASF), caused by African swine fever virus (ASFV), poses a significant threat to the global swine industry. This underscores the urgent need for safe and effective ASF vaccines.
Methods: Here, we constructed five bacterium-like particles (BLPs) that each display one of the five ASFV antigens (F317L, H171R, D117L, B602L, and p54) based on the Gram-positive enhancer matrix-protein anchor (GEM-PA) system.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!