Proteinuria associated with podocyte effacement is a hallmark of focal segmental glomerulosclerosis (FSGS). Preclinical studies implicated ROBO2/SLIT2 signaling in the regulation of podocyte adhesion, and inhibition of this pathway is a novel target to slow FSGS disease progression. This first-in-human dose-escalation study evaluated the safety, tolerability, pharmacokinetics, and immunogenicity of PF-06730512, an Fc fusion protein that targets the ROBO2/SLIT2 pathway, in healthy adults. In this Phase 1, double-blind, sponsor-open study, single ascending dose (SAD) cohorts were randomized to receive up to 1000 mg or placebo intravenously (IV); multiple ascending dose (MAD) cohorts were randomized to receive up to 400 mg subcutaneous (SC) doses, 1000 mg IV dose, or matching placebo. Safety evaluations were performed up to 71 (SAD) and 113 (MAD) days after dosing; blood samples were collected to measure serum PF-06730512 concentrations and antidrug antibodies (ADA) to PF-06730512. Seventy-nine participants (SAD, 47; MAD, 32) were enrolled. There were 108 mild (SAD, 46; MAD, 62) and 21 moderate (SAD, 13; MAD, 8) treatment-emergent adverse events (TEAEs); no deaths, treatment-related serious AEs, severe TEAEs, or infusion reactions were reported. PF-06730512 exposure generally increased in an approximately dose-proportional manner; mean t ranged from 12-15 days across 50-1000 mg doses. Immunogenicity incidence was low (SAD, 0 ADA+; MAD, 2 ADA+). In conclusion, single IV doses of PF-06730512 up to 1000 mg and multiple IV and SC dosing up to 1000 and 400 mg, respectively, were safe and well tolerated in healthy participants. Further trials in patients with FSGS are warranted. Clinical trial registration: Clinicaltrials.gov: NCT03146065.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8351251 | PMC |
http://dx.doi.org/10.1002/prp2.813 | DOI Listing |
Introduction: The purpose of our study was to evaluate the safety, tolerability, and pharmacokinetics of furaprevir, a new highly selective hepatitis C virus NS3/4A protease inhibitor.
Methods: The study was divided into 2 parts: Part A (single ascending-dose study, SAD) and Part B (multiple ascending-dose study, MAD). A total of 62 healthy subjects were enrolled in the studies.
Expert Opin Investig Drugs
January 2025
Department of Pediatric Respiratory, Children's Medical Center, The First Hospital of Jilin University, Jilin, China.
Background: XKH001 is a recombinant humanized IgG1 monoclonal antibody against IL-25 for the treatment of type 2 inflammatory diseases. This study aimed to evaluate the tolerability, pharmacokinetics, and pharmacodynamics of XKH001 in humans for the first time.
Research Design And Methods: This clinical investigation adopted a randomized, double-blind, and placebo-controlled single ascending dose (SAD) and multiple ascending dose (MAD) design.
J Hepatol
January 2025
MASLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, La Jolla, CA, USA.
Background & Aims: A common genetic variant (rs738409) encoding isoleucine to methionine at position 148 in the PNPLA3 protein is a determinant of hepatic steatosis, inflammation, fibrosis, cirrhosis, and liver-related mortality. AZD2693 is a liver-targeted antisense oligonucleotide against PNPLA3 mRNA. We evaluated the safety, tolerability, pharmacokinetics, and pharmacodynamics in single ascending dose (SAD) and multiple ascending dose (MAD) studies.
View Article and Find Full Text PDFClin Transl Sci
January 2025
NIMML Institute, Blacksburg, Virginia, USA.
NIM-1324 is an oral investigational new drug for autoimmune disease that targets the Lanthionine Synthetase C-like 2 (LANCL2) pathway. Through activation of LANCL2, NIM-1324 modulates CD4+ T cells to bias signaling and cellular metabolism toward increased immunoregulatory function while providing similar support to phagocytes. In primary human immune cells, NIM-1324 reduces type I interferon and inflammatory cytokine (IL-6, IL-8) production.
View Article and Find Full Text PDFJ Clin Pharmacol
January 2025
Department of Clinical Medicine (Pharmaceutical Medicine), Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan.
Pharmaceutical companies have several options to evaluate drug-induced QT prolongation, often referred to as QT pathways, during clinical development. Current regulatory practices recommend achieving high clinical exposure (HCE) for conventional thorough QT (TQT) studies. An alternative to the TQT study, commonly known as the Q&A 5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!