Sepsis is a severe organ dysfunction disease, usually accompanied by acute kidney injury (AKI). miR-29b-3p was inhibited in sepsis-induced AKI, while its role in AKI was unclear. Therefore, this study determined the role of miR-29b-3p in sepsis-induced AKI, and investigated its underlying mechanism. In this study, the AKI model was established through injecting with lipopolysaccharides (LPS) intraperitoneally. In LPS challenged mice, serum blood urea nitrogen and creatinine were increased, and renal tissues pathological damage was induced. Besides, miR-29b-3p was declined in LPS-induced AKI mice and podocytes. In addition, HDAC4 was elevated in LPS-treated podocytes. Furthermore, upregulated miR-29b-3p attenuated LPS-induced mice podocyte injury, and HDAC4 was identified as a direct target of miR-29b-3p. Moreover, overexpression of miR-29b-3p attenuated LPS-induced AKI in mice. In conclusion, miR-29b-3p was inhibited in LPS-induced AKI. Downregulation of miR-29b-3p aggravated podocyte injury through targeting HDAC4 in LPS-induced AKI. miR-29b-3p may act as a valuable target for AKI therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/kjm2.12431 | DOI Listing |
Mol Genet Genomics
January 2025
Department of Emergency, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
Acute kidney injury (AKI) is one of the most serious and common complications in the course of sepsis, known for its poor prognosis and high mortality rate. Recently, ferroptosis, as a newly discovered regulatory cell death, might be closely associated with the progression of AKI. METTL14 is a writer of RNA m6A, an abundant epigenetic modification in transcriptome with broad function.
View Article and Find Full Text PDFKaohsiung J Med Sci
December 2024
Department of Emergency Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China.
Curcumin and bone marrow stem cells (BMSCs)-derived exosomes are considered to be useful for the treatment of many human diseases, including sepsis-associated acute kidney injury (SA-AKI). However, the role and underlying molecular mechanism of curcumin-loaded BMSCs-derived exosomes in the progression of SA-AKI remain unclear. Exosomes (BMSCs-EXO or BMSCs-EXO) were isolated from curcumin or DMSO-treated BMSCs, and then co-cultured with LPS-induced HK2 cells.
View Article and Find Full Text PDFDrug Chem Toxicol
December 2024
Internal Medicine Department, Shenzhen Bao'an Authentic TCM Therapy Hospital, Shenzhen, China.
Podocyte injury is a major biomarker of primary glomerular disease that leads to massive proteinuria and kidney failure. Ginsenoside Rk1, a substance derived from ginseng, has several pharmacological activities, such as anti-apoptotic, anti-inflammatory, and antioxidant effects. In this study, our goal is to investigate the roles and mechanisms of ginsenoside Rk1 in podocyte injury and acute kidney injury (AKI).
View Article and Find Full Text PDFImmunobiology
December 2024
Department of Pediatric Nephrology, Children's Hospital of Anhui Medical University, Hefei, China; Department of Pediatric Nephrology, Anhui Provincial Children's Hospital, Hefei, China. Electronic address:
Sepsis-associated acute kidney injury (S-AKI) is a prevalent and life-threatening complication in hospitalized and critically ill patients. Recent researches indicates that immunoproteasome, especially proteasome 20S subunit beta 8 (PSMB8), is highly associated with various kidney diseases. This study aims to investigate the potential involvement of PSMB8 in S-AKI and its impact on apoptosis and inflammation.
View Article and Find Full Text PDFMol Cell Probes
December 2024
Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China. Electronic address:
Long non-coding RNA TMC3-AS1 is identified to be upregulated by lipopolysaccharide (LPS) in inflammatory disease, but its role in acute kidney injury (AKI) is almost unknown. The study investigated the involvement of TMC3-AS1 in LPS-induced AKI and its downstream molecular regulatory mechanism. Our data suggested that knocking down TMC3-AS1 significantly reduced renal dysfunction, tissue inflammation and tissue damage in LPS-induced mice, and promoted cell viability, inhibited inflammation, apoptosis and necrosis in LPS-stimulated human renal tubular epithelial cells HK2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!