Two new families of cobalt(ii/iii)-lanthanide(iii) coordination aggregates have been reported: tetranuclear [LnCoL(N-BuDEA)(OCCMe)(HO)]·(MeOH)·(HO) (Ln = Gd, 1; Tb, 2; Dy, 3; n = 2, m = 10 for 1 and 2; n = 6, m = 2 for 3) and pentanuclear LnCoCoL(N-BuDEA)(OCCMe)(MeOH) (Ln = Dy, 4; Ho, 5) formed from the reaction of two aggregation assisting ligands HL (o-vanillin oxime) and N-BuDEAH (N-butyldiethanolamine). A change in preference from a lower to higher nuclearity structure was observed on going across the lanthanide series brought about by the variation in the size of the Ln ions. An interesting observation was made for the varying sequence of addition of the ligands into the reaction medium paving the way to access both structural types for Ln = Dy. HRMS (+ve) of solutions gave further insight into the formation of the aggregates via different pathways. The tetranuclear complexes adopt a modified butterfly structure with a more complex bridging network while trapping of an extra Co ion in the pentanuclear complexes destroys this arrangement putting the Co-Co-Co axis above the Ln-Ln axis. Direct current (dc) magnetic susceptibility measurements reveal weak antiferromagnetic coupling in 1. Complexes 2 and 5 display no slow magnetic relaxation, whereas complexes 3 and 4 display out-of-phase signals at low temperature in ac susceptibility measurements. All compounds were analyzed with DFT and CASSCF calculations and informations about the single-ion anisotropies and mutual 4f-4f/4f-3d magnetic interactions were derived.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1dt02038bDOI Listing

Publication Analysis

Top Keywords

lanthanide series
8
varying sequence
8
susceptibility measurements
8
complexes display
8
complexes
5
tetranuclear pentanuclear
4
pentanuclear [co-ln]
4
[co-ln] complexes
4
complexes lanthanide
4
series varying
4

Similar Publications

The nucleotides play multiple fundamental roles that are essential in biochemical enzymatic reactions and signaling pathways. Many diseases are closely associated with their dysregulation. Therefore, reliable and sensitive optical probes to discriminate various nucleotides are essential in biochemistry, drug discovery, and disease diagnosis.

View Article and Find Full Text PDF

We developed a systematic polarizable force field for molten trivalent rare-earth chlorides, from lanthanum to europium, based on first-principle calculations. The proposed model was employed to investigate the local structure and physicochemical properties of pure molten salts and their mixtures with sodium chloride. We computed densities, heat capacities, surface tensions, viscosities, and diffusion coefficients and disclosed their evolution along the lanthanide series, filling the gaps for poorly studied elements, such as promethium and europium.

View Article and Find Full Text PDF

Purpose: Brain temperature is tightly regulated and reflects a balance between cerebral metabolic heat production and heat transfer between the brain, blood, and external environment. Blood temperature and flow are critical to the regulation of brain temperature. Current methods for measuring in vivo brain and blood temperature are invasive and impractical for use in small animals.

View Article and Find Full Text PDF

A Wavy Multiple Tm(III)-Containing Open Wells-Dawson Silicotungstate: Synthesis, Structure, and Catalytic Application.

Inorg Chem

January 2025

Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, China.

A Tm(III)-rich silicotungstate Na{Tm(HO)[Tm(HO)(SiWO)]}·35HO () based on the open Wells-Dawson-type [SiWO] building unit was synthesized by the reaction of Na[α-SiWO]·18HO, itaconic acid, and TmCl in a HAc/NaAc buffer solution. Five kinds of Tm(III) ions were found in this compound and further linked the {TmSiW} subunit to form an interesting wavy 1D chain structure, which achieved the introduction of more lanthanide (Ln) ions into the [SiWO] unit for the first time. contains multiple exposed Tm-metal active sites, making it an efficient catalyst for the acetalization of 2-aminobenzamides/2-aminobenzenesulphonamides with aldehydes.

View Article and Find Full Text PDF

Lanthanides (Ln) are typically found in the +3 oxidation state. However, in recent decades, their chemistry has been expanded to include the less stable +2 oxidation state across the entire series except promethium (Pm), facilitated by the coordination of ligands such as trimethylsilylcyclopentadienyl, CHSiMe (Cp'). The complexes have been the workhorse for the synthesis and theoretical study of the fundamental aspects of divalent lanthanide chemistry, where experimental and computational evidence have suggested the existence of different ground state (GS) configurations, 4f or 4f 5d, depending on the specific metal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!