Background We have previously reported the feasibility of noninvasive stereotactic body radiotherapy (SBRT) as a novel approach for renal denervation. Methods and Results Herein, from a translational point of view, we assessed the antihypertensive effect and chronological evolution of SBRT-induced renal nerve injury within 6 months in a hypertensive swine model. Hypertension was induced in swine by subcutaneous implantation of deoxycorticosterone acetate pellets in combination with a high-salt diet. A single dose of 25 Gy with SBRT was delivered for renal denervation in 9 swine within 3.4±1.0 minutes. Blood pressure levels at baseline and 1 and 6 months post-SBRT were comparable to control (n=5), whereas renal norepinephrine was significantly lower at 6 months (<0.05). Abdominal computed tomography, performed before euthanasia and renal function assessment, remained normal. Standard semiquantitative histological assessment showed that compared with control (1.4±0.4), renal nerve injury was greater at 1 month post-SBRT (2.3±0.3) and peaked at 6 months post-SBRT (3.2±0.8) (<0.05), along with a higher proportion of active caspase-3-positive nerves (<0.05). Moreover, SBRT resulted in continuous dysfunction of renal sympathetic nerves and low level of nerve regeneration in 6 months by immunohistochemistry analysis. Conclusions SBRT delivering 25 Gy for renal denervation was safe and related to sustained reduction of sympathetic activity by aggravating nerve damage and inhibiting nerve regeneration up to 6 months; however, its translation to clinical trial should be cautious because of the negative blood pressure response in the deoxycorticosterone acetate-salt hypertensive swine model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8475062PMC
http://dx.doi.org/10.1161/JAHA.120.020068DOI Listing

Publication Analysis

Top Keywords

renal denervation
12
noninvasive stereotactic
8
hypertensive swine
8
swine model
8
renal
5
denervation noninvasive
4
stereotactic radiotherapy
4
radiotherapy induces
4
induces persistent
4
persistent reduction
4

Similar Publications

Resistant hypertension is defined as office blood pressure >140/90 mm Hg with a mean 24-hour ambulatory blood pressure of >130/80 mm Hg in patients who are compliant with 3 or more antihypertensive medications. Those who persistently fail pharmaceutical therapy may benefit from interventional treatment, such as renal denervation. Sympathetic nervous activity in the kidney is a known contributor to increased blood pressure because it results in efferent and afferent arteriole vasoconstriction, reduced renal blood flow, increased sodium and water reabsorption, and the release of renin.

View Article and Find Full Text PDF

Background: Postoperative pain remains a significant problem in patients undergoing donor nephrectomy despite reduced tissue trauma following laparoscopic living donor nephrectomy (LLDN). Inadequately treated pain leads to physiological and psychological consequences, including chronic neuropathic pain.

Materials And Methods: This randomized controlled double-blinded trial was conducted in sixty-nine (n = 69) participants who underwent LLDN under general anesthesia.

View Article and Find Full Text PDF

cHild -in-mothEr Approach for DeliverING Renal Denervation System: The HEADING-IN Technique.

Catheter Cardiovasc Interv

January 2025

Division of Cardiology, Ospedale degli Infermi, ASL, Biella, Italy.

Renal denervation is an emerging strategy for the management of uncontrolled hypertension. However, real-world experience is still modest, in particular for the management of complex anatomy, with available data being limited to the selected population of randomized clinical trials. We first describe the feasibility of delivering the renal denervation system to the target site with a child-in-mother technique, using a common coronary guiding extension, in a patient with severe tortuosity and double renal arteries.

View Article and Find Full Text PDF

Cardio-renal syndrome (CRS) is a complex condition involving bidirectional dysfunction of the heart and kidneys, in which the failure of one organ exacerbates failure in the other. Traditional pharmacologic treatments are often insufficient to manage the hemodynamic and neurohormonal abnormalities underlying CRS, especially in cases resistant to standard therapies. Device-based therapies have emerged as a promising adjunct or alternative approach, offering targeted intervention to relieve congestion, improve renal perfusion, and modulate hemodynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!