Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Vascular atresia are often treated via transcatheter recanalization or surgical vascular anastomosis due to congenital malformations or coronary occlusions. The cellular response to vascular anastomosis or recanalization is, however, largely unknown and current techniques rely on restoration rather than optimization of flow into the atretic arteries. An improved understanding of cellular response post anastomosis may result in reduced restenosis. Here, an in vitro platform is used to model anastomosis in pulmonary arteries (PAs) and for procedural planning to reduce vascular restenosis. Bifurcated PAs are bioprinted within 3D hydrogel constructs to simulate a reestablished intervascular connection. The PA models are seeded with human endothelial cells and perfused at physiological flow rate to form endothelium. Particle image velocimetry and computational fluid dynamics modeling show close agreement in quantifying flow velocity and wall shear stress within the bioprinted arteries. These data are used to identify regions with greatest levels of shear stress alterations, prone to stenosis. Vascular geometry and flow hemodynamics significantly affect endothelial cell viability, proliferation, alignment, microcapillary formation, and metabolic bioprofiles. These integrated in vitro-in silico methods establish a unique platform to study complex cardiovascular diseases and can lead to direct clinical improvements in surgical planning for diseases of disturbed flow.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8823098 | PMC |
http://dx.doi.org/10.1002/adhm.202100968 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!