Humans are often faced with an exploration-versus-exploitation trade-off. A commonly used paradigm, multi-armed bandit, has shown humans to exhibit an "uncertainty bonus", which combines with estimated reward to drive exploration. However, previous studies often modeled belief updating using either a Bayesian model that assumed the reward contingency to remain stationary, or a reinforcement learning model. Separately, we previously showed that human learning in the bandit task is best captured by a dynamic-belief Bayesian model. We hypothesize that the estimated uncertainty bonus may depend on which learning model is employed. Here, we re-analyze a bandit dataset using all three learning models. We find that the dynamic-belief model captures human choice behavior best, while also uncovering a much larger uncertainty bonus than the other models. More broadly, our results also emphasize the importance of an appropriate learning model, as it is crucial for correctly characterizing the processes underlying human decision making.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8341546 | PMC |
MAGMA
January 2025
Aix Marseille Univ, CNRS, CRMBM, Marseille, France.
Objective: Segmentation of individual thigh muscles in MRI images is essential for monitoring neuromuscular diseases and quantifying relevant biomarkers such as fat fraction (FF). Deep learning approaches such as U-Net have demonstrated effectiveness in this field. However, the impact of reducing neural network complexity remains unexplored in the FF quantification in individual muscles.
View Article and Find Full Text PDFInflammation
January 2025
Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
Chronic obstructive pulmonary disease (COPD) is a prevalent chronic inflammatory airway disease with high incidence and significant disease burden. R-loops, functional chromatin structure formed during transcription, are closely associated with inflammation due to its aberrant formation. However, the role of R-loop regulators (RLRs) in COPD remains unclear.
View Article and Find Full Text PDFMed Biol Eng Comput
January 2025
Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.
Performing automatic and standardized 4D TEE segmentation and mitral valve analysis is challenging due to the limitations of echocardiography and the scarcity of manually annotated 4D images. This work proposes a semi-supervised training strategy using pseudo labelling for MV segmentation in 4D TEE; it employs a Teacher-Student framework to ensure reliable pseudo-label generation. 120 4D TEE recordings from 60 candidates for MV repair are used.
View Article and Find Full Text PDFACS Nano
January 2025
School of Medicine, Nankai University, Tianjin 300071, China.
Designing dual-targeted nanomedicines to enhance tumor delivery efficacy is a complex challenge, largely due to the barrier posed by blood vessels during systemic delivery. Effective transport across endothelial cells is, therefore, a critical topic of study. Herein, we present a synthetic biology-based approach to engineer dual-targeted ferritin nanocages (Dt-FTn) for understanding receptor-mediated transport across tumor endothelial cells.
View Article and Find Full Text PDFLangmuir
January 2025
School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, Hebei 050017, China.
Warfarin (WAR), an effective oral anticoagulant, is of utmost importance in treating many diseases. Despite its significance, rapid and precise discrimination of WAR remains a formidable challenge, especially facing its structural analogs of metabolites. Here, three kinds of herb-derived N-doped carbon dots (NCDs) were greenly synthesized via a fast and simple microwave-assisted method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!