Background: Femoral nerve block (FNB) and adductor canal block (ACB) have been used increasingly for pain control during anterior cruciate ligament (ACL) reconstruction in adolescent patients. However, recent evidence suggests that the use of FNB may affect quadriceps strength recovery 6 months after surgery.

Purpose/hypothesis: To compare postoperative isokinetic strength in adolescents who received FNB, ACB, or no block for perioperative analgesia during ACL reconstruction. We anticipated lower postoperative quadriceps and hamstring isokinetic deficits in adolescents who received FNB as compared with ACB.

Study Design: Cohort study; Level of evidence, 3.

Methods: Patients were included in the study if they had undergone hamstring tendon autograft ACL reconstruction by a single surgeon from July 2008 to January 2018 and if they underwent isokinetic muscle testing at 4 to 8 months postoperatively. The participants were divided into 3 groups (no block, FNB, and ACB), and we compared the deficit in percentages between the affected and unaffected limbs as calculated from the isokinetic quadriceps and hamstring strength testing at 60 and 180 deg/s. Between-group analysis was performed using analysis of variance, with an alpha of .05.

Results: A total of 98 participants were included in the analysis (31 no block, 36 FNB, and 31 ACB). The mean ± SD age of the patients was 15.26 ± 1.15, 15.50 ± 1.42, and 15.71 ± 1.44, for no block, FNB, and ACB, respectively. At 5.61 months postoperatively, there was no significant difference across the 3 groups in isokinetic quadriceps deficits ( ≥ .99), and the only significant difference in isokinetic hamstring deficit was observed for peak flexion at 180 deg/s, in which the ACB group had lower peak torque than the FNB group (-9.80% ± 3.48% vs 2.37% ± 3.23%; = .035). The ratio of participants with a deficit exceeding 15% did not differ significantly among the 3 groups.

Conclusion: Contrary to previous research, our findings indicate only minimal difference in quadriceps strength among the 3 types of perioperative analgesia in adolescents approximately 6 months after ACL reconstruction. The only significant strength deficit was seen in the hamstrings of patients receiving ACB at peak flexion as compared with those receiving FNB.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8312176PMC
http://dx.doi.org/10.1177/23259671211017516DOI Listing

Publication Analysis

Top Keywords

acl reconstruction
20
block fnb
16
fnb acb
16
quadriceps hamstring
12
nerve block
12
block
9
fnb
9
hamstring strength
8
strength adolescents
8
adolescents months
8

Similar Publications

Aberrant Insertion of the Anterior Cruciate Ligament on the Lateral Meniscus: A Case Report.

JBJS Case Connect

January 2025

Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, Connecticut.

Case: A 16-year-old woman presented with acute on chronic knee pain and instability following a twisting injury. The tibial insertion of the anterior cruciate ligament (ACL) was nonvisualized on magnetic resonance imaging. A cord-like ACL, originating from the lateral intercondylar notch and inserting smoothly into the anterior horn of the intact lateral meniscus, was found on arthroscopy.

View Article and Find Full Text PDF

Following anterior cruciate ligament (ACL) injury, quadriceps muscle atrophy persists despite rehabilitation, leading to loss of lower limb strength, osteoarthritis, poor knee joint health and reduced quality of life. However, the molecular mechanisms responsible for these deficits in hypertrophic adaptations within the quadriceps muscle following ACL injury and reconstruction are poorly understood. While resistance exercise training stimulates skeletal muscle hypertrophy, attenuation of these hypertrophic pathways can hinder rehabilitation following ACL injury and reconstruction, and ultimately lead to skeletal muscle atrophy that persists beyond ACL reconstruction, similar to disuse atrophy.

View Article and Find Full Text PDF

Multi-ligament reconstruction in adolescent patients affected by congenital femoral deficiency is an extremely rare and delicate surgical procedure. There are very few reported cases of complete anterior and posterior cruciate ligament agenesis in these patients. We present a complex case of a 16-year-old girl affected by congenital femoral deficiency and ipsilateral tibial hypoplasia who was treated successfully for a complete agenesis of the anterior (ACL) and posterior (PCL) cruciate ligament with single-sitting ACL and PCL reconstruction.

View Article and Find Full Text PDF

The anterior cruciate ligament (ACL) is one of the most injured ligaments, with approximately 100,000 ACL reconstructions taking place annually in the United States. In order to successfully manage ACL rupture, it is of the utmost importance to understand the anatomy, unique physiology, and biomechanics of the ACL, as well as the injury mechanisms and healing capacity. Currently, the "gold standard" for the treatment of ACL ruptures is surgical reconstruction, particularly for young patients or athletes expecting to return to pivoting sports.

View Article and Find Full Text PDF

This study was performed according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta- Analyses) guidelines. PubMed and Medline databases were searched in October 2023 for studies reporting outcomes of arthroscopic anterior cruciate ligament (ACL) reconstruction and stable medial meniscal ramp lesion treatment. Studies focused on diagnostic approaches, biomechanical properties, unstable ramp lesions, isolated ramp lesions, and concomitant intraarticular/extraarticular pathologies other than ACL rupture are excluded.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!