The ability of a collagen-based matrix to support cell proliferation, migration, and infiltration has been reported; however, the direct effect of an aqueous collagen suspension on cell cultures has not been studied yet. In this work, the effects of a high-concentration aqueous suspension of a micronized type I equine collagen (EC-I) have been evaluated on a normal mouse fibroblast cell line. Immunofluorescence analysis showed the ability of EC-I to induce a significant increase of type I and III collagen levels, parallel with overexpression of crucial proteins in collagen biosynthesis, maturation, and secretion, prolyl 4-hydroxylase (P4H) and heat shock protein 47 (HSP47), as demonstrated by western blot experiments. The treatment led, also, to an increase of -smooth muscle actin (-SMA) expression, evaluated through western blot analysis, and cytoskeletal reorganization, as assessed by phalloidin staining. Moreover, scanning electron microscopy analysis highlighted the appearance of plasma membrane extensions and blebbing of extracellular vesicles. Altogether, these results strongly suggest that an aqueous collagen type I suspension is able to induce fibroblast myodifferentiation. Moreover, our findings also support in vitro models as a useful tool to evaluate the effects of a collagen suspension and understand the molecular signaling pathways possibly involved in the effects observed following collagen treatment .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8337109 | PMC |
http://dx.doi.org/10.1155/2020/6093974 | DOI Listing |
Tissue Cell
January 2025
School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea. Electronic address:
Numerous naturally occurring biological structures have inspired the development of innovative biomaterials for a wide range of applications. Notably, the nanotopographical architectures found in natural materials have been leveraged in biomaterial design to enhance cell adhesion and proliferation and improve tissue regeneration for biomedical applications. In this study, we fabricated three-dimensional (3D) chitin-glucan micro/nanofibrous fungal-based spheres coated with collagen (type I) to mimic the native extracellular matrix (ECM) microenvironment.
View Article and Find Full Text PDFInt Urogynecol J
January 2025
Department of Obstetrics and Gynecology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, China.
Introduction And Hypothesis: Pelvic organ prolapse (POP) impacts women's health and quality of life. Post-surgery complications can be severe. This study uses rat models to replicate sacrocolpopexy and test materials for pelvic support, verifying the 4-week postoperative mortality rate, the mechanical properties of the mesh tissue, and the collagen content.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
IBMM, University of Montpellier, CNRS, ENSCM, 34095 Montpellier, France.
Background: Gadolinium-based contrast agents (GBCA) are widely used in magnetic resonance imaging (MRI) to enhance image contrast by interacting with water molecules, thus improving diagnostic capabilities. However, understanding the residual accumulation of GBCA in tissues after administration remains an area of active research. This highlights the need for advanced analytical techniques capable of investigating interactions between GBCAs and biopolymers, such as type I collagen, which are abundant in the body.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
Research and Development Department, APIVITA SA, Industrial Park Markopoulo Mesogaias, 19003 Athens, Greece.
: Vine leaves are a bulky by-product that are disposed of and treated as waste in the wine production process. In the present study polyphenols from vine leaves were extracted and simultaneously encapsulated in a new delivery system consisting of liposomes and cyclodextrins. This system was further combined with propolis polyphenols encapsulated in cyclodextrins, resulting in a colloidal suspension for the release of antioxidants in a time-controlled way, the rate of which depends on the ratio of the materials.
View Article and Find Full Text PDFIn Vivo
December 2024
College of Biology, Hunan University, Changsha, P.R. China;
Background/aim: Silicosis, the most severe type of occupational pneumoconiosis, leads to diffuse pulmonary fibrosis without specific therapy. Ferroptosis is triggered by reactive oxygen species (ROS) and Fe overload-induced lipid peroxidation, which is involved in the progression of pulmonary fibrosis. As an important coenzyme in the process of aerobic respiration, Coenzyme Q10 (CoQ10) can enhance mitochondrial function and energy supply and reduce malondialdehyde (MDA) to limit the risk of fibrosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!