Today, silicon solar cells (amorphous films and wafer-based) are a main source of green energy. These cells and their components are produced by employing various technologies. Unfortunately, during the production process, chemicals that are harmful for the environment and for human life are used. For example, hydrofluoric acid is used to texture the top electrode to improve light harvesting. In this work, and also in recent ones, we report a way to obtain 3D textures on the top electrode by using zinc oxide nanorods. The efficiency of a textured solar cell structure is compared with the one obtained for a planar zinc oxide/silicon structure. The present results show the possibility to produce efficient solar cells on a relatively thin 50 μm thick silicon substrate. Solar cells with structured top electrodes were examined by numerous measuring techniques. Scanning electron microscopy revealed a grain-like morphology of the magnesium-doped zinc oxide film. The size of the grains is closely related to the structure of the nanorods. The external quantum efficiency of the cells was measured. The obtained solar cell shows response in a wide spectral range from ultraviolet to infrared. Current-voltage and current-voltage-temperature measurements were performed to evaluate basic photovoltaic parameters. At room temperature, the cells efficiency equals to 9.1% for textured structures and 5.4% for planar structures, respectively. The work, therefore, describes an environmentally friendly technology for PV architecture with surface textures increasing the efficiency of PV cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8313973 | PMC |
http://dx.doi.org/10.3762/bjnano.12.60 | DOI Listing |
Natl Sci Rev
January 2025
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
The incorporation of polymeric insulators has led to notable achievements in the field of organic semiconductors. By altering the blending concentration, polymeric insulators exhibit extensive capabilities in regulating molecular configuration, film crystallinity, and mitigation of defect states. However, current research suggests that the improvement in such physical properties is primarily attributed to the enhancement of thin film morphology, an outcome that seems to be an inevitable consequence of incorporating insulators.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou, 215006, China.
Wide-bandgap perovskite solar cells (WBG PSCs) have promising applications in tandem devices yet suffer from low open-circuit voltages (Vs) and less stability. To address these issues, the study introduces multifunctional nicotinamide derivatives into WBG PSCs, leveraging the regulation on photovoltaically preferential orientation and optoelectronic properties via diverse functional groups, e.g.
View Article and Find Full Text PDFAdv Mater
January 2025
Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China.
The long exciton diffusion length (L) plays an important role in promoting exciton dissociation, suppressing charge recombination, and improving the charge transport process, thereby improving the performance of organic solar cells (OSCs), especially in thick-film OSCs. However, the limited L hinders further improvement in device performance as the film thickness increases. Here, an organic-metal platinum complex, namely TTz-Pt, is synthesized and served as a solid additive into the D18-Cl:L8-BO system.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China.
Effective modifications for the buried interface between self-assembled monolayers (SAMs) and perovskites are vital for the development of efficient, stable inverted perovskite solar cells (PSCs) and their tandem photovoltaics. Herein, an ionic-liquid-SAM hybrid strategy is developed to synergistically optimize the uniformity of SAMs and the crystallization of perovskites above. Specifically, an ionic liquid of 1-butyl-3-methyl-1H-imidazol-3-iumbis((trifluoromethyl)sulfonyl)amide (BMIMTFSI) is incorporated into the SAM solution, enabling reduced surface roughness, improved wettability, and a more evenly distributed surface potential of the SAM film.
View Article and Find Full Text PDFSci Rep
January 2025
Imec, imo-imomec, Thor Park 8320, 3600, Genk, Belgium.
This study presents a comprehensive evaluation of Copper Indium Gallium Selenide (CIGS) solar technology, benchmarked against crystalline silicon (c-Si) PERC PV technology. Utilizing a newly developed energy yield model, we analyzed the performance of CIGS in various environmental scenarios, emphasizing its behavior in low-light conditions and under different temperature regimes. The model demonstrated high accuracy with improved error metrics of normalized mean bias error (nMBE) ~ 1% and normalized root mean square error (nRMSE) of ~ 8%-20% in simulating rack mounted setup and integrated PV systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!