Climate change causes increased tree mortality leading to canopy loss and thus sun-exposed forest floors. Sun exposure creates extreme temperatures and radiation, with potentially more drastic effects on forest organisms than the current increase in mean temperature. Such conditions might potentially negatively affect the maturation of mushrooms of forest fungi. A failure of reaching maturation would mean no sexual spore release and, thus, entail a loss of genetic diversity. However, we currently have a limited understanding of the quality and quantity of mushroom-specific molecular responses caused by sun exposure. Thus, to understand the short-term responses toward enhanced sun exposure, we exposed mushrooms of the wood-inhabiting forest species while still attached to their mycelium and substrate, to artificial solar light (ca. 30°C and 100,000 lux) for 5, 30, and 60 min. We found significant differentially expressed genes at 30 and 60 min. Eukaryotic Orthologous Groups (KOG) class enrichment pointed to defense mechanisms. The 20 most significant differentially expressed genes showed the expression of heat-shock proteins, an important family of proteins under heat stress. Although preliminary, our results suggest mushroom-specific molecular responses to tolerate enhanced sun exposure as expected under climate change. Whether mushroom-specific molecular responses are able to maintain fungal fitness under opening forest canopies remains to be tested.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8328440PMC
http://dx.doi.org/10.1002/ece3.7862DOI Listing

Publication Analysis

Top Keywords

sun exposure
20
mushroom-specific molecular
12
molecular responses
12
climate change
8
enhanced sun
8
differentially expressed
8
expressed genes
8
sun
5
exposure
5
forest
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!