Genome-Wide SNPs Provide Insights on the Cryptic Genetic Structure and Signatures of Climate Adaption in Germplasms.

Front Plant Sci

College of Biological Resource and Food Engineering, Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, China.

Published: July 2021

Domesticated species represent unique systems in which the evolutionary genomic consequences of intensive selective breeding and adaptation can be thoroughly investigated. occurs naturally and is in cultivation throughout the downstream region of the Jinshajiang River in Southwest China. This species is characterised by high konjac glucomannan content, and has been cultivated in China for nearly 2,000 years. To study genetic differentiation and local adaption of , we sampled 13 distinct local cultivated populations of this species. Restriction site-associated DNA sequencing was conducted with 87 samples, resulting in 24,225 SNPs. The population structure analyses suggest two main genetic groups: one in the relatively upstream region, and one downstream. We found evidence of additional sub-structure within the upstream group, demonstrating the statistical power of genomic SNPs in discovering subtle genetic structure. The environmental and geographic factors were all identified as significant in shaping the genetic differentiation of this species. Notably, the proportion of environmental factors was larger than geographic factors in influencing the population genetic patterns of . We also discovered loci that were associated with local adaptation. These findings will help us understand the genetic differentiation of this newly domesticated species, thereby informing future breeding programs of .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8343094PMC
http://dx.doi.org/10.3389/fpls.2021.683422DOI Listing

Publication Analysis

Top Keywords

genetic differentiation
12
genetic structure
8
domesticated species
8
geographic factors
8
genetic
7
species
5
genome-wide snps
4
snps provide
4
provide insights
4
insights cryptic
4

Similar Publications

Recently, RNA velocity has driven a paradigmatic change in single-cell RNA sequencing (scRNA-seq) studies, allowing the reconstruction and prediction of directed trajectories in cell differentiation and state transitions. Most existing methods of dynamic modeling use ordinary differential equations (ODE) for individual genes without applying multivariate approaches. However, this modeling strategy inadequately captures the intrinsically stochastic nature of transcriptional dynamics governed by a cell-specific latent time across multiple genes, potentially leading to erroneous results.

View Article and Find Full Text PDF

Limited whole genome sequencing (WGS) studies in Asian populations result in a lack of representative reference panels, thus hindering the discovery of ancestry-specific variants. Here, we present the South and East Asian reference Database (SEAD) panel ( https://imputationserver.westlake.

View Article and Find Full Text PDF

Heritable phenotypic variation plays a central role in evolution by conferring rapid adaptive capacity to populations. Mechanisms that can explain genetic diversity by describing connections between genotype and organismal fitness have been described. However, the difficulty of acquiring comprehensive data on genotype-phenotype-environment relationships has hindered the efforts to explain how the ubiquitously observed phenotypic variation in populations emerges and is maintained.

View Article and Find Full Text PDF

Introduction: Useful germplasm for citrus breeding includes all sexually compatible species of the former genera , and , now merged in the single genus. An improved knowledge on the synteny/collinearity between the genome of these different species, and on their recombination landscapes, is essential to optimize interspecific breeding schemes.

Method: We have performed a large comparative genetic mapping study including several main clades of the genus.

View Article and Find Full Text PDF

Eusociality, characterized by reproductive division of labor, cooperative brood care, and multi-generational cohabitation, represents a pinnacle of complex social evolution, most notably manifested within the Hymenoptera order including bees, ants, and wasps. The molecular underpinnings underlying these sophisticated social structures remain an enigma, with noncoding RNAs (ncRNAs) emerging as crucial regulatory players. This article delves into the roles of ncRNAs in exerting epigenetic control during the development and maintenance of Hymenopteran eusociality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!