Septic cardiomyopathy is a common complication of severe sepsis, which is one of the leading causes of death in intensive care units. Therefore, finding an effective therapy target is urgent. Neferine is an alkaloid extracted from the green embryos of mature seeds of Gaertn., which has been reported to exhibit various biological activities and pharmacological properties. This study aims to explore the protective effects of neferine against lipopolysaccharide (LPS)-induced myocardial dysfunction and its mechanisms. The LPS-induced cardiac dysfunction mouse model was employed to investigate the protective effects of neferine. In this study, we demonstrated that neferine remarkably improved cardiac function and survival rate and ameliorated morphological damage to heart tissue in LPS-induced mice. Neferine also improved cell viability and mitochondrial function and reduced cell apoptosis and the production of reactive oxygen species in LPS-treated H9c2 cells. In addition, neferine significantly upregulated Bcl-2 expression and suppressed cleaved caspase 3 activity in LPS-induced mouse heart tissue and H9c2 cells. Furthermore, neferine also upregulated the phosphatidylinositol 3-kinase/protein kinase B/mechanistic target of rapamycin (PI3K/AKT/mTOR) signaling pathway and . Conversely, LY294002 (a PI3K inhibitor) reversed the protective effect of neferine in LPS-induced H9c2 cells. Our findings thus demonstrate that neferine ameliorates LPS-induced cardiac dysfunction by activating the PI3K/AKT/mTOR signaling pathway and presents a promising therapeutic agent for the treatment of LPS-induced cardiac dysfunction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8344844PMC
http://dx.doi.org/10.3389/fphar.2021.706251DOI Listing

Publication Analysis

Top Keywords

pi3k/akt/mtor signaling
12
signaling pathway
12
lps-induced cardiac
12
cardiac dysfunction
12
h9c2 cells
12
neferine
10
neferine ameliorates
8
myocardial dysfunction
8
protective effects
8
effects neferine
8

Similar Publications

Background: There is still no reliable therapeutic targets and effective pharmacotherapy for metabolic dysfunction-associated steatotic liver disease (MASLD). RASD1 is short for Ras-related dexamethasone-induced 1, a pivotal factor in various metabolism processes of Human. However, the role of RASD1 remains poorly illustrated in MASLD.

View Article and Find Full Text PDF

The dual role of calnexin on malignant progression and tumor microenvironment in glioma.

Sci Rep

December 2024

National Engineering Research Center for Miniaturized Detection Systems, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China.

Glioma is the most common malignant brain tumor. Previous studies have reported that calnexin (CANX) is significantly up-regulated in a variety of malignant tumors, including glioma, but its biological function and mechanism in glioma is still unclear. In this study, differentially expressed proteins in 3 primary glioblastoma multiforme (GBM) tissues and 3 paracancer tissues were identified by liquid chromatography-tandem mass spectrometry-based proteomic and bioinformatic analysis.

View Article and Find Full Text PDF

Understanding the molecular signaling pathways of colorectal cancer (CRC) can be accepted as the first step in treatment strategy. Permanent mTOR signaling activation stimulates the CRC process via various biological processes. It supplies the survival of CRC stem cells, tumorigenesis, morbidity, and decreased response to drugs in CRC pathogenesis.

View Article and Find Full Text PDF

Bisindole alkaloids constitute a significant class of natural compounds distinguished by their characteristic bisindole structure and renowned for their anticancer properties. Over the past six decades, researchers have isolated 425 microorganism-derived bisindole alkaloids (MDBAs). Among them, 187 MDBAs have demonstrated anticancer properties against various in vitro cancer cell lines, primarily by impeding the cell cycle, restraining cell proliferation, and inducing apoptosis and autophagy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!