Targeted Protein Degradation and Regulation with Molecular Glue: Past and Recent Discoveries.

Curr Med Chem

Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer, Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.

Published: May 2022

The evolution in research and clinical settings of targeted therapies has been inspired by the progress of cancer chemotherapy to use small molecules and monoclonal antibodies for targeting specific disease-associated genes and proteins for noninfectious chronic diseases. In addition to conventional protein inhibition and activation strategies as drug discovery modalities, new methods of targeted protein degradation and regulation using molecular glues have become an attractive approach for drug discovery. Mechanistically, molecular glues trigger interactions between the proteins that originally did not interact by forming ternary complexes as protein-protein interaction (PPI) modulators. New molecular glues and their mechanisms of action have been actively investigated in the past decades. An immunomodulatory imide drug, thalidomide, and its derivatives have been used in the clinic and are a class of molecular glue that induces degradation of several neo-substrates. In this review, we summarize the development of molecular glues and share our opinions on the identification of novel molecular glues in an attempt to promote the concept and inspire further investigations.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0929867328666210806113949DOI Listing

Publication Analysis

Top Keywords

molecular glues
20
targeted protein
8
protein degradation
8
degradation regulation
8
regulation molecular
8
molecular glue
8
drug discovery
8
molecular
7
glues
5
glue discoveries
4

Similar Publications

Targeted protein degraders, in the form of proteolysis targeting chimaeras (PROTACs) and molecular glues, leverage the ubiquitin-proteasome system to catalytically degrade specific target proteins of interest. Because such molecules can be extremely potent, they have attracted considerable attention as a therapeutic modality in recent years. However, while targeted degraders have great potential, they are likely to face many of the same challenges as more traditional small molecules when it comes to their development as therapeutics.

View Article and Find Full Text PDF

Molecular glues (MGs) and proteolysis-targeting chimeras (PROTACs) are used to modulate protein-protein interactions (PPIs), via induced proximity between compounds that have little or no affinity for each other naturally. They promote either reversible inhibition or selective degradation of a target protein, including ones deemed undruggable by traditional therapeutics. Though native MS (nMS) is capable of analyzing multiprotein complexes, the behavior of these artificially induced compounds in the gas phase is still not fully understood, and the number of publications over the past few years is still rather limited.

View Article and Find Full Text PDF

Development of a Buchwald-Hartwig Amination for an Accelerated Library Synthesis of Cereblon Binders.

ACS Med Chem Lett

January 2025

Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States.

In recent years, targeted protein degradation (TPD) has emerged as a powerful therapeutic modality utilizing both heterobifunctional ligand-directed degraders (LDDs) and molecular glues (e.g., CELMoDs) to recruit E3 ligases for inducing polyubiquitination and subsequent proteasomal degradation of target proteins.

View Article and Find Full Text PDF

Catechol redox maintenance in mussel adhesion.

Nat Rev Chem

January 2025

Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA.

Catechol-functionalized proteins in mussel holdfasts are essential for underwater adhesion and cohesion and have inspired countless synthetic polymeric materials and devices. However, as catechols are prone to oxidation, long-term performance and stability of these inventions awaits effective antioxidation strategies. In mussels, catechol-mediated interactions are stabilized by 'built-in' homeostatic redox reservoirs that restore catechols oxidized to quinones.

View Article and Find Full Text PDF

Chemically induced dimerization/proximity (CID/CIP) systems controlled by chemical dimerizers (also known as molecular glues) provide valuable means for understanding and manipulating complex, dynamic biological systems. In this study, we present the development of versatile chemo-optogenetic systems utilizing azobenzene-based photoswitchable molecular glues (sMGs) for reversible protein dimerization controlled by visible light. These systems allow multiple cycles of light-induced dimerization, overcoming the limitations of irreversible photolysis in previous systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!