Therapeutic proteins including monoclonal antibodies (mAbs) are usually produced in engineered host cell lines that also produce thousands of endogenous proteins at varying levels. A critical aspect of the development of biotherapeutics manufacturing processes is the removal of these host cell proteins (HCP) to appropriate levels in order to minimize risk to patient safety and drug efficacy. During the development process and associated analytical characterization, mass spectrometry (MS) has become an increasingly popular tool for HCP analysis due to its ability to provide both relative abundance and identity of individual HCP and because the method does not rely on polyclonal antibodies, which are used in enzyme-linked immunosorbent assays. In this study, HCP from 29 commercially marketed mAb and mAb-based therapeutics were profiled using liquid chromatography (LC)-MS/MS with the identification and relative quantification of 79 individual HCP in total. Excluding an outlier drug, the relative levels of individual HCP determined in the approved therapeutics were generally low, with an average of 20 ppm (µmol HCP/mol drug) measured by LC-MS/MS, and only a few (<7 in average) HCP were identified in each drug analyzed. From this analysis, we also gained knowledge about which HCP are frequently identified in mAb-based products and their typical levels relative to the drugs for the identified individual HCP. In addition, we examined HCP composition from antibodies produced in house and found our current development process brings HCP to levels that are consistent with marketed drugs. Finally, we described a specific case to demonstrate how the HCP information from commercially marketed drugs could inform future HCP analyses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8354607PMC
http://dx.doi.org/10.1080/19420862.2021.1955811DOI Listing

Publication Analysis

Top Keywords

host cell
12
individual hcp
12
therapeutic protein
8
hcp
6
cell protein
4
protein profiling
4
profiling commercial
4
commercial therapeutic
4
protein drugs
4
drugs benchmark
4

Similar Publications

Background: Circular (circ)RNAs have emerged as crucial contributors to cancer progression. Nonetheless, the expression regulation, biological functions, and underlying mechanisms of circRNAs in mediating hepatocellular carcinoma (HCC) progression remain insufficiently elucidated.

Methods: We identified circUCK2(2,3) through circRNA sequencing, RT-PCR, and Sanger sequencing.

View Article and Find Full Text PDF

We have previously developed a transcription-based bacterial three-hybrid (B3H) assay as a genetic approach to probe RNA-protein interactions inside of E. coli cells. This system offers a straightforward path to identify and assess the consequences of mutations in RBPs with molecular phenotypes of interest.

View Article and Find Full Text PDF

The Circulating Renin-Angiotensin System and Mortality among Patients Hospitalized for COVID-19: A Mechanistic Substudy of the ACTIV-4 Host Tissue Trials.

Am J Physiol Lung Cell Mol Physiol

January 2025

Department of Internal Medicine, Section of Pulmonary, Critical Care, Allergy, and Immunologic Diseases, Wake Forest University School of Medicine, Winston-Salem, North Carolina.

SARS-CoV-2 targets angiotensin converting enzyme-2 (ACE2), a key peptidase of the renin-angiotensin system (RAS), which regulates the balance of the vasoconstrictor/inflammatory peptide Ang II and the vasodilator/anti-inflammatory peptide Ang-(1-7). Few studies have quantified the circulating elements of the RAS longitudinally in SARS-CoV-2 infection and their association with COVID-19 outcomes. Thus, we evaluated the association of circulating RAS enzymes and peptides with mortality among patients with COVID-19.

View Article and Find Full Text PDF

Periodontitis is a chronic inflammatory condition mainly caused by the interaction between the host immune system and periodontal tissue pathogens, and may lead to consequences, such as alveolar bone defects and tooth loss. Incomplete bacterial removal, persistent inflammation and high reactive oxygen species (ROS) environment are the main challenges for periodontal tissue repair and alveolar bone regeneration. In this study, an injectable composite microgel (Gelatin methacryloyl-Phenylboronic acid/Hydroxyadamantane, GPH) loaded with antimicrobial peptide (AMP) and cerium dioxide (CeO) microspheres was developed to achieve a synergistic function of bacteriostasis, immunomodulation, and ROS removal.

View Article and Find Full Text PDF

Autologous chimeric antigen receptor (CAR) T cells are a genetically engineered therapy that is highly effective against B cell malignancies and multiple myeloma. However, the length and cost of personalized manufacturing limits access and leaves patients vulnerable to disease progression. Allogeneic cell therapies have the potential to increase patient access and improve treatment outcomes but are limited by immune rejection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!