It has been suggested that uncoupling proteins (UCPs) transport protons interconversion between two conformational states: one in the "cytoplasmic state" and the other in the "matrix state". Matrix and cytoplasmic salt-bridge networks are key controllers of these states. This study proposes a mechanism for proton transport in tetrameric UCP2, with focus on the role of the matrix network. Eleven mutants were prepared to disrupt (K → Q or D → N mutations) or alter (K → D and D → K mutations) the salt-bridges in the matrix network. Proteins were recombinantly expressed in membrane, reconstituted in model lipid membranes, and their structures and functions were analyzed by gel electrophoresis, circular dichroism spectroscopy, fluorescence assays, as well as molecular dynamics simulations. It is shown that the UCP2 matrix network contains five salt-bridges (rather than the previously reported three), and the matrix network can regulate the proton transport by holding the protein's transmembrane helices in close proximity, limiting the movement of the activator fatty acid(s). A biphasic two-state molecular model is proposed for proton transport in tetrameric (a dimer of stable dimers) UCP2, in which all the monomers are functional, and monomers in each dimer are in the same transport mode. Purine nucleotide (e.g., ATP) can occlude the internal pore of the monomeric units of UCP tetramers interacting with positive residues at or in the proximity of the matrix network (K38, K141, K239, R88, R185, and R279) and prevent switching between cytoplasmic and matrix states, thus inhibiting the proton transport. This study provides new insights into the mechanism of proton transport and regulation in UCPs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.1c04766DOI Listing

Publication Analysis

Top Keywords

proton transport
24
matrix network
20
transport
8
uncoupling proteins
8
mechanism proton
8
transport tetrameric
8
→ →
8
→ mutations
8
matrix
7
proton
5

Similar Publications

Unusual Iron-Independent Ferroptosis-like Cell Death Induced by Photoactivation of a Typical Iridium Complex for Hypoxia Photodynamic Therapy.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China.

Ferroptosis is a unique cell death mode that relies on iron and lipid peroxidation (LPO) and is extensively utilized to treat drug-resistant tumor. However, like the other antitumor model, requirement of oxygen limited its application in treating the malignant tumors in anaerobic environments, just as photodynamic therapy, a very promising anticancer therapy. Here, we show that an iridium(III) complex (Ir-dF), which was often used in proton-coupled electron transport (PCET) process, can induce efficient cell death upon photo irradiation, which can be effectively protected by the typical ferroptosis inhibitor Fer-1 but not by the classic iron chelating agents and ROS scavengers.

View Article and Find Full Text PDF

Aminobenzoic Acid Covalently Modified Polyoxotungstates Based on {XW} Clusters with Proton Conductivity Property.

Inorg Chem

January 2025

Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China.

Three cases of aminobenzoic acid hybrid polyoxotungstates, Na(HO)[(HPWO) (OCCHNH)]·7HO (), K(HO)[(AsWO)(OCCHNH)]·4HO (), and [(HN(CH)]Na(HO)[(SbWO) (OCCHNH)]·7HO (), were successfully synthesized. This is the first report of the successful assembly of the hexanuclear {XW} (X = HP, As, or Sb) clusters and organic carboxylic acid (para aminobenzoic acid) ligands. All three hybrids feature a common {XW} unit composed of a six-membered {WO} octahedral ring capped by one {XO} trigonal pyramid.

View Article and Find Full Text PDF

The 'Viroporin' family comprises a number of mostly small-sized, integral membrane proteins encoded by animal and plant viruses. Despite their sequence and structural diversity, viroporins share a common functional trend: their capacity to assemble transmembrane channels during the replication cycle of the virus. Their selectivity spectrum ranges from low-pH-activated, unidirectional proton transporters, to size-limited permeating pores allowing passive diffusion of metabolites.

View Article and Find Full Text PDF

Background: The imbalance of glutamate (Glu) and gamma-aminobutyric acid (GABA) neurotransmitter system plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Riluzole is a Glu modulator originally approved for amyotrophic lateral sclerosis that has shown potential neuroprotective effects in various neurodegenerative disorders. However, whether riluzole can improve Glu and GABA homeostasis in AD brain and its related mechanism of action remain unknown.

View Article and Find Full Text PDF

Binding mechanism and antagonism of the vesicular acetylcholine transporter VAChT.

Nat Struct Mol Biol

January 2025

Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.

The vesicular acetylcholine transporter (VAChT) has a pivotal role in packaging and transporting acetylcholine for exocytotic release, serving as a vital component of cholinergic neurotransmission. Dysregulation of its function can result in neurological disorders. It also serves as a target for developing radiotracers to quantify cholinergic neuron deficits in neurodegenerative conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!