Resveratrol is a phenol compound produced by some plants in response to pathogens, infection, or physical injury. It is well-known that resveratrol has antioxidant and protective roles in damages potentially caused by cancer or other serious disorders. Thus, it is considered as a candidate agent for the prevention and treatment of human diseases. Evidence has confirmed other bioactive impacts of resveratrol, including cardioprotective, anti-tumorigenic, anti-inflammatory, phytoestrogenic, and neuroprotective effects. Ischemia-reperfusion (IR) can result in various disorders, comprising myocardial infarction, stroke, and peripheral vascular disease, which may continue to induce debilitating conditions and even mortality. In virtue of chronic ischemia or hypoxia, cells switch to anaerobic metabolism, giving rise to some dysfunctions in mitochondria. As the result of lactate accumulation, adenosine triphosphate levels and pH decline in cells. This condition leads cells to apoptosis, necrosis, and autophagy. However, restoring oxygen level upon reperfusion after ischemia by producing reactive oxygen species is an outcome of mitochondrial dysfunction. Considering the neuroprotective effect of resveratrol and neuronal injury that comes from IR, we focused on the mechanism(s) involved in IR injury in the nervous system and also on the functions of resveratrol in the protection, inhibition, and treatment of this injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11064-021-03412-z | DOI Listing |
Acta Pharmacol Sin
January 2025
Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
Spinal cord injury (SCI) is a serious trauma of the central nervous system (CNS). SCI induces a unique lipid-dense environment that results in the deposition of large amounts of lipid droplets (LDs). The presence of LDs has been shown to contribute to the progression of other diseases.
View Article and Find Full Text PDFAm J Chin Med
January 2025
School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong 226019, P. R. China.
Ginkgolic acids (GAs) are distinctive secondary metabolites of () primarily found in its leaves and seeds, with the highest concentration located in the exotesta. GAs are classified as long-chain phenolic compounds, and exhibit structural similarities to lignoceric acid. Their structural diversity arises from variations in the length of side chains and their number of double bonds, resulting in six distinct forms within extracts (GBE).
View Article and Find Full Text PDFAdv Drug Deliv Rev
January 2025
Neurodegenerative Diseases Department, Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Ness-Ziona, Israel; Department of Molecular Genetics, Weizmann Institute of Science, 76100, Rehovot, Israel.
Self-renewal capacity and potential to differentiate into almost any cell type of the human body makes pluripotent stem cells a valuable starting material for manufacturing of clinical grade cell therapies. Neurodegenerative diseases are characterized by gradual loss of structure or function of neurons, often leading to neuronal death. This results in gradual decline of cognitive, motor, and physiological functions due to the degeneration of the central nervous systems.
View Article and Find Full Text PDFPerfusion
January 2025
Department of Pediatrics, Yale Medicine, Pediatric Critical Care Medicine, New Haven, CT, USA.
Extracorporeal Membrane Oxygenation (ECMO) use is associated with substantial psychiatric morbidity in patients and their families. This systematic review and meta-analysis quantifies the prevalence of post-traumatic stress disorder (PTSD), anxiety, and depression among ECMO survivors and their families. Included studies enrolled patients on ECMO or their families and reported at least one trauma-related psychopathology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!