Accurate and reproducible measurement of blood flow profile is very important in many clinical investigations for diagnosing cardiovascular disorders. Given that many factors could affect human circulation, and several parameters must be set to properly evaluate blood flows with phase-contrast techniques, we developed an MRI-compatible hydrodynamic phantom to simulate different physiological blood flows. The phantom included a programmable hydraulic pump connected to a series of pipes immersed in a solution mimicking human soft tissues, with a blood-mimicking fluid flowing in the pipes. The pump is able to shape and control the flow by driving a piston through a dedicated software. Periodic waveforms are used as input to the pump to move the fluid into the pipes, with synchronization of the MRI sequences to the flow waveforms. A dedicated software is used to extract and analyze flow data from magnitude and phase images. The match between the nominal and the measured flows was assessed, and the scope of phantom variables useful for a reliable calibration of an MRI system was accordingly defined. Results showed that the NO-HYPE phantom is a valuable tool for the assessment of MRI scanners and sequence design for the MR evaluation of blood flows. Overview of the NOvel HYdrodynamic Phantom for the Evaluation of MRI flow measurements (NO-HYPE). Left: internal of the CompuFlow 1000 MR pump unit. Right: Setting of the NO-HYPE before a MRI acquisition session. Soft tissue mimicking material is hosted in the central part of the phantom (light blue chamber). Glass pipes pass through the chamber carrying the blood mimicking fluid.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8382656PMC
http://dx.doi.org/10.1007/s11517-021-02390-2DOI Listing

Publication Analysis

Top Keywords

hydrodynamic phantom
12
blood flows
12
novel hydrodynamic
8
phantom evaluation
8
evaluation mri
8
mri flow
8
flow measurements
8
dedicated software
8
phantom
7
mri
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!