A series of modified polysaccharide microparticles have been fabricated and their potential application for scavenging reactive oxygen species (ROS) and their derivatives to achieve osteoarthritis (OA) treatment has been explored. These microparticles were cross-linked dextran (Sephadex) with different carbazate substitution ratios determined by the TNBS assay and elemental analysis. It has been demonstrated that they could effectively scavenge carbonylated proteins and ROS including hydroxyl radicals (˙OH), superoxide anions (˙O) and HO and their derivatives with high efficiency, improve the viability of HO-treated chondrocytes by reducing their ROS levels, as well as lower their inflammatory factors. The above ability of antioxidation and inflammation resistance improved with the increase of carbazate substitution ratio. Significantly, this work provided the proof that modified Sephadex successfully alleviated the deterioration of cartilage and the progression of OA . The proposed microparticles showed a very promising capability for reducing ROS levels and further treating OA.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1bm00743bDOI Listing

Publication Analysis

Top Keywords

cross-linked dextran
8
carbazate substitution
8
reducing ros
8
ros levels
8
ros
5
carbazate-modified cross-linked
4
microparticles
4
dextran microparticles
4
microparticles suppress
4
suppress progression
4

Similar Publications

Giant unilamellar vesicles (GUVs) are versatile cell models in biomedical and environmental research. Of the various GUV production methods, hydrogel-assisted GUV production is most easily implemented in a typical biological laboratory. To date, agarose, polyvinyl alcohol, cross-linked dextran-PEG, polyacrylamide, and starch hydrogels have been used to produce GUVs.

View Article and Find Full Text PDF

Development of efficient drug delivery systems remains a critical challenge in pharmaceutical applications, necessitating novel approaches to improve drug loading and release profiles. In this study, a novel method is presented for fabricating crosslinked polydopamine particles (XPDPs) using a water/water Pickering emulsion system. The emulsion is composed of poly(ethylene glycol) and dextran, stabilized by polydopamine (PDA) particles.

View Article and Find Full Text PDF

Structural characterization of polysaccharides from Polygonatum Sibiricum and effect on alleviating hyperlipidemia in egg yolk emulsion-induced mice.

Int J Biol Macromol

January 2025

Department of Endocrinology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China. Electronic address:

Polysaccharides are the major bioactive composition of Polygonatum sibiricum (P. sibiricum). However, the structural and functional identifications of these polysaccharides were still limited.

View Article and Find Full Text PDF

During the last decades, the use of innovative hybrid materials in energy storage devices has led to notable advances in the field. However, further enhancement of their electrochemical performance faces significant challenges nowadays, imposed by the materials used in the electrodes and the electrolyte. Such problems include the high solubility of both the organic and the inorganic anode components in the electrolyte as well as the limited intrinsic electronic conductivity and substantial volume variation of the materials during cycling.

View Article and Find Full Text PDF

Luminescence Lifetime-Based Water Conductivity Sensing Using a Cationic Dextran-Supported Ru(II) Polypyridyl Complex.

Sensors (Basel)

December 2024

Chemical Optosensors & Applied Photochemistry Group (GSOLFA), Department of Organic Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.

Water conductivity sensing relies universally on electrical measurements, which are subject to corrosion of the electrodes and subsequent signal drift in prolonged in situ uses. Furthermore, they cannot provide contactless sensing or remote readout. To this end, a novel device for water conductivity monitoring has been developed by employing a microenvironment-sensitive ruthenium complex, [Ru(2,2'-bipyridine-4,4'-disulfonato)], embedded into a quaternary ammonium functionalized cross-linked polymer support.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!