Ultraviolet-B (UV-B) radiation as an environmental potential elicitor induces the synthesis of plant secondary metabolites. The effects of UV-B radiation on photosynthetic pigments and dry weight, biochemical and molecular features of old and young leaves of Salvia verticillata were investigated. Plants were exposed to 10.97 kJ m day of biologically effective UV-B radiation for up to 10 days. The sampling process was performed in four steps: 1, 5, 10, and 13 days (recovery time) after the start of irradiation. As a result of plant investment in primary and secondary metabolism, the production of phenolic compounds increased, while chlorophyll levels and leaf dry weight (%) declined. Under long-term UV-B exposure, young leaves exhibited the most significant reduction in chlorophyll a and b content and leaf dry weight. The highest level of total phenol (1.34-fold) and flavonoid concentration (2-fold) relative to the control was observed on the 5th day and recovery time, respectively. Young leaves demonstrated the highest amount of phenolic acids in recovery time. Young leaves on the 5th day of the experiment exerted the highest level of antioxidant activity when compared to the control. A positive correlation was observed between antioxidant activity and the amount of phenolic compounds. Regarding the expression of phenylpropanoid pathway genes, UV-B enhanced the expression of phenylalanine ammonia-lyase, tyrosine aminotransferase, and rosmarinic acid synthase with the highest level in young leaves on the 10th day. Overall, young leaves of S. verticillata indicated higher sensitivity to UV-B radiation and developed more tangible reactions to such radiation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2021.07.037DOI Listing

Publication Analysis

Top Keywords

young leaves
28
uv-b radiation
16
dry weight
12
recovery time
12
highest level
12
salvia verticillata
8
phenolic compounds
8
leaf dry
8
5th day
8
time young
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!