Computations on the dendritic trees of neurons have important constraints. Voltage dependent conductances in dendrites are not similar to arbitrary direct-current generation, they are the basis for dendritic nonlinearities and they do not allow converting positive currents into negative currents. While it has been speculated that the dendritic tree of a neuron can be seen as a multi-layer neural network and it has been shown that such an architecture could be computationally strong, we do not know if that computational strength is preserved under these biological constraints. Here we simulate models of dendritic computation with and without these constraints. We find that dendritic model performance on interesting machine learning tasks is not hurt by these constraints but may benefit from them. Our results suggest that single real dendritic trees may be able to learn a surprisingly broad range of tasks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8835230 | PMC |
http://dx.doi.org/10.1016/j.neuroscience.2021.07.036 | DOI Listing |
Biotechnol Notes
November 2024
Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
Cell-free synthetic biology aims at the targeted replication, design, and modification of life processes in open systems by breaking free of constraints such as cell membrane barriers and living cell growth. The beginnings of this systematized technology, which took place in the last century, were used to explore the secrets of life. Currently, with its easy integration with other technologies or disciplines, cell-free synthetic biology is developing into a powerful and effective means of understanding, exploiting, and extending the structure and function of natural living systems.
View Article and Find Full Text PDFUnlabelled: Eastern equine encephalitis virus (EEEV) is an arthropod-borne, positive-sense RNA alphavirus posing a substantial threat to public health. Unlike similar viruses such as SARS-CoV-2, EEEV replicates efficiently in neurons, producing progeny viral particles as soon as 3-4 hours post-infection. EEEV infection, which can cause severe encephalitis with a human mortality rate surpassing 30%, has no licensed, targeted therapies, leaving patients to rely on supportive care.
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China.
Direct electrochemical detection of miRNA biomarkers in tumor tissue interstitial fluid (TIF) holds great promise for adjuvant therapy for tumors in the perioperative period, yet is limited by background interference and weak signal. Herein, a wash-free and separation-free miRNA biosensor based on photoexcited electro-driven reactive oxygen channeling analysis (LEOCA) is developed to solve the high-fidelity detection in physiological samples. In the presence of miRNA, nanoacceptors (ultrasmall-size polydopamine, uPDA) are responsively assembled on the surface of nanodonors (zirconium metal-organic framework, ZrMOF) to form core-satellite aggregates.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
January 2025
Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, FL, USA.
Objectives: Radiotherapy manages pancreatic cancer in various settings; however, the proximity of gastrointestinal (GI) luminal organs-at-risk (OAR) poses challenges to conventional radiotherapy. Proton beam therapy (PBT) may reduce toxicities compared to photon therapy. This consensus statement summarizes PBT's safe and optimal delivery for pancreatic tumors.
View Article and Find Full Text PDFACS Nano
January 2025
Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States.
In recent years, the rapid development and employment of autonomous technology have been observed in many areas of human activity. Autonomous technology can readily adjust its function to environmental conditions and enable an efficient operation without human control. While applying the same concept to designing advanced biomolecular therapies would revolutionize nanomedicine, the design approaches to engineering biological nanocomputing agents for predefined operations within living cells remain a challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!