Diabetic retinopathy (DR) is an irreversible and progressive diabetic complication leading to visual impairment, even blindness. Due to the delicate and complicated structure of the retina, the pathology of DR has not been completely elucidated yet. We constructed a transcriptome atlas of >14,000 single cells from healthy and streptozotocin (STZ)-induced diabetic murine retinas to decipher pathological alterations of DR. We found four stress-inducible genes Cirbp, Rmb3, Mt1 and Mt2 commonly induced in most types of retinal cells. Bipolar cells were little affected on both number and gene expression. Diabetes increased expression of inflammatory factor genes in retinal microglia, and stimulated expression of immediate early genes (IEGs) in retinal astrocytes. A large number of genes were deregulated in diabetic vascular endothelial cells (ECs), and the differentially expressed genes were paired to the pathways functioning in metabolism, shear stress and vascular permeability. These pathways were mapped by more deregulated genes in a subpopulation of ECs specifically presented in diabetic retinas (diabetic retinal ECs, DRECs). Moreover, several inflammation pathways were activated in DRECs, and the most significant one is the IL-17 signaling pathway. According to the EC markers, DRECs were mainly capillary ECs, confirmed by immunofluorescent staining of S100a9, a target gene of the IL-17 signaling pathway. This study deciphered pathological alterations of DR, and provided clues for potential targets for DR therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.exer.2021.108718 | DOI Listing |
Background: Seizures in Alzheimer's Disease (AD) are increasingly recognized to occur and can increase cognitive decline and reduce survival compared to unaffected age-matched peers (Lyou et al. 2018). Administration of antiseizure medicines (ASMs) to AD patients with epileptiform activity may improve cognition (Vossel et al.
View Article and Find Full Text PDFBackground: Homozygosity for the rare APOE3-Christchurch (APOE3Ch) variant, encoding for apoE3-R136S (apoE3-Ch), was linked to resistance against an aggressive form of familial Alzheimer's disease (AD). Carrying two copies of APOE3Ch was sufficient to delay autosomal AD onset by 30 years. This remarkable protective effect makes it a strong candidate for uncovering new therapies against AD.
View Article and Find Full Text PDFBackground: Reliable treatment approaches for addressing early cognitive impairment and Alzheimer's disease (AD) are currently lacking. Given the multifactorial nature of AD, therapeutic strategies need to focus on disease-specific biochemical pathways. Given the significance of metabolic pathways in cognitive impairment, it is essential to investigate alternative disease modifiers capable of targeting multiple metabolic pathways, such as phytochemicals.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
NYU Grossman School of Medicine, New York, NY, USA.
Background: Non-human primates (NHP) serve as an important bridge for testing therapeutic agents that have been previously shown to be effective in transgenic mouse models. Our earlier published data using an NHP model of sporadic AD-related pathology that develops abundant cerebral amyloid angiopathy (CAA), squirrel monkeys (SQMs), indicates that chronic treatment with TLR9 agonist, class B CpG ODN, safely ameliorates CAA while promoting cognitive benefits. In the present study, we intended to delineate alterations in brain metabolome induced by chronic CpG ODN administration in order to provide further insight into CpG ODN immunomodulatory capabilities.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
UIPS, CHANDIGARH, Punjab, India.
Background: Alzheimer's disease is a brain disorder that causes neurodegeneration and is linked with insulin resistance at molecular, clinical, and demographic levels. Defective insulin signaling promotes Aβ aggregation and accelerates Aβ formation in the brain leading to Type III diabetes.
Objective: The objective of this research project is to demonstrate a linkage if any between the risk of developing Alzheimer's disease and insulin resistance.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!