Selection based on genomic predictions has become the method of choice for genetic improvement in dairy cattle. This offers huge opportunity for developing countries with little or no pedigree data, and preliminary studies have shown promising results. The African Dairy Genetic Gains (ADGG) project initiated a digital system of dairy performance data collection, accompanied by genotyping in Tanzania in 2016. Currently, ADGG has the largest body of dairy performance data generated in East Africa from a smallholder dairy system. This study examines the use of genomic best linear unbiased prediction (GBLUP) and single-step (ss)GBLUP for the estimation of genetic parameters and accuracy of genomic prediction for daily milk yield and body weight in Tanzania. The estimates of heritability for daily milk yield from GBLUP and ssGBLUP were essentially the same, at 0.12 ± 0.03. The heritability estimates for daily milk yield averaged over the whole lactation from random regression model (RRM) GBLUP or ssGBLUP were 0.22 and 0.24, respectively. The heritability of body weight from GBLUP was 0.24 ± 04 but was 0.22 ± 04 from the ssGBLUP analysis. Accuracy of genomic prediction for milk yield from a forward validation was 0.57 for GBLUP based on fixed regression model or 0.55 from an RRM. Corresponding estimates from ssGBLUP were 0.59 and 0.53, respectively. Accuracy for body weight, however, was much higher at 0.83 from GBLUP and 0.77 for ssGBLUP. The moderate to high levels of accuracy of genomic prediction (0.53-0.83) obtained for milk yield and body weight indicate that selection on the basis of genomic prediction is feasible in smallholder dairy systems and most probably the only initial possible pathway to implementing sustained genetic improvement programs in such systems.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2020-20052DOI Listing

Publication Analysis

Top Keywords

genomic prediction
20
milk yield
20
body weight
16
smallholder dairy
12
accuracy genomic
12
daily milk
12
dairy
8
dairy cattle
8
dairy systems
8
genetic improvement
8

Similar Publications

Inequalities and Inclusion in Genomics Applied to Healthcare: A Latin American Perspective.

Annu Rev Genomics Hum Genet

January 2025

1Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas, Campinas, Brazil;

Integrating genomics into healthcare within the precision medicine (PM) framework poses distinct challenges in resource-limited regions like Latin America and the Caribbean (LAC). These challenges arise partly from the lack of PM models tailored for low- and middle-income countries. To address this, healthcare authorities in LAC should adopt predictive models to estimate costs and infrastructure needed for PM programs.

View Article and Find Full Text PDF

In 2021, a year before ChatGPT took the world by storm amid the excitement about generative artificial intelligence (AI), AlphaFold 2 cracked the 50-year-old protein-folding problem, predicting three-dimensional (3D) structures for more than 200 million proteins from their amino acid sequences. This accomplishment was a precursor to an unprecedented burgeoning of large language models (LLMs) in the life sciences. That was just the beginning.

View Article and Find Full Text PDF

Personalized cancer drug treatment is emerging as a frontier issue in modern medical research. Considering the genomic differences among cancer patients, determining the most effective drug treatment plan is a complex and crucial task. In response to these challenges, this study introduces the Adaptive Sparse Graph Contrastive Learning Network (ASGCL), an innovative approach to unraveling latent interactions in the complex context of cancer cell lines and drugs.

View Article and Find Full Text PDF

Survivors of pediatric brain tumours are at a high risk of cognitive morbidity. Reliable individual-level predictions regarding the likelihood, degree, and affected domains of cognitive impairment would be clinically beneficial. While established risk factors exist, quantitative MRI analysis may enhance predictive value, above and beyond current clinical risk models.

View Article and Find Full Text PDF

Retrosynthesis is a strategy to analyze the synthetic routes for target molecules in medicinal chemistry. However, traditional retrosynthesis predictions performed by chemists and rule-based expert systems struggle to adapt to the vast chemical space of real-world scenarios. Artificial intelligence (AI) has revolutionized retrosynthesis prediction in recent decades, significantly increasing the accuracy and diversity of predictions for target compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!