Temperature-induced structural variations of retrograded starch gel during long-term storage were investigated in a real food system (wet starch noodles). Fresh starch noodles presented a B-type XRD pattern containing 8.82% crystallinity and 16.04% double helices. In the first 2 weeks, double helices of starch chain formed long-range ordered structure leading to increased crystallinity, and such structural transformation was positively correlated with increasing storage temperature (from 4 °C to 35 °C) and storage time. However, with the extension of storage time to 12 weeks, the disorganization of supra-molecular structure was likely to be observed by decreased crystallinity, double helix and water mobility. Besides, we propose that the area and intensity of Raman band at 2910 cm can be a good indicator for evaluating perfection of crystallinity in starch noodles. These results contributed to a better understanding of mechanisms underlying molecular order changes of retrograded starch gel product during long-term storage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2021.118367 | DOI Listing |
Int J Biol Macromol
January 2025
College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, PR China. Electronic address:
The aim of this study was to investigate the mechanism of protein digestibility improvement by exploring the changes in structural characteristics of proteins in noodles with varying levels of mechanically activated starch. Therefore, different levels of mechanically activated wheat starch were mixed with refined wheat flour to produce noodles. Results showed that moderately mechanically activated starch could significantly improve protein digestibility and noodles containing 8.
View Article and Find Full Text PDFLett Appl Microbiol
January 2025
Shenzhen Academy of Metrology & Quality Inspection, Shenzhen, 518100, China.
Bongkrekic acid (BA) toxin, produced by Burkholderia gladioli pathovar cocovenenans bacteria, has been implicated in foodborne illness outbreaks. BA poisoning is associated with rice noodle consumption; hence, this study investigated B. cocovenenans growth and BA production in wet rice noodles comprising varying starch ratios, starch types, rice nutrients, and saccharides.
View Article and Find Full Text PDFFoods
December 2024
College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
Yam noodles were produced by replacing high-gluten wheat flour with yam flour modified with plasma-activated water and twin-screw extrusion (PAW-TSE). The effects of varying amounts of modified yam flour on the color, cooking characteristics, texture, and in vitro digestibility of the noodles were investigated. As the amount of modified yam flour increased, the noodles became darker in color, while the bound water content increased, and the free water content decreased.
View Article and Find Full Text PDFFood Res Int
January 2025
Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei, China. Electronic address:
This study aimed to investigate the influence of heterogeneous amylopectin (waxy corn starch, WCS) on the retrogradation of wheat starch (WS), hoping to provide a new idea for alleviating the retrogradation of steamed cold noodles. The chain length distribution data confirmed the formation of a binary gel network resulting from the heterogeneous amylopectin structure between WCS and WS. With the increase of WCS concentration, the modulus and setback value of WS-WCS binary gel decreased, which was attributed to the newly built network structure hindering the aggregation of WS molecules.
View Article and Find Full Text PDFFoods
December 2024
College of Food Science and Engineering, Jilin University, Changchun 130062, China.
This study investigates the effects of fermentation modification and combined modification with heat-moisture treatment (HMT) on the multiscale structure, physical and chemical properties, and quality of corn flour in the production of traditional fermented corn noodles (TFCNs). The results indicate that after fermentation modification, the starch granule size decreased while the amylopectin proportion increased. Fermentation also enhanced the relative crystallinity and short-range order of the starch, along with an increase in resistant digestion components and ester content in the noodles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!