In this work, we study interactions of five different hemicellulose models, i.e. Galactoglucomannan, O-Acetyl-Galactoglucomannan, Fuco-Galacto-Xyloglucan, 4-O-Methylglucuronoxylan, and 4-O-Methylglucuronoarabinoxylan, and their respective binding strength to cellulose nanocrystals by molecular dynamics simulations. Glucuronoarabinoxylan showed the highest free energy of binding, whereas Xyloglucan had the lowest interaction energies amongst the five models. We further performed simulated shear tests and concluded that failure mostly happens at the inter-molecular interaction level within the hemicellulose fraction, rather than at the interface with cellulose. The presence of water molecules seems to have a weakening effect on the interactions of hemicellulose and cellulose, taking up the available hydroxyl groups on the surface of the cellulose for hydrogen bonding. We believe that these studies can shed light on better understanding of plant cell walls, as well as providing evidence on variability of the structures of different plant sources for extractions, purification, and operation of biorefineries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2021.118364 | DOI Listing |
Molecules
January 2025
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.
Under mild conditions, formic acid effectively separates the components of lignocellulose, removing the majority of the hemicellulose and lignin from the cellulose. However, it has not yet been determined if multiple treatments with fresh formic acid may totally remove hemicellulose and lignin. In this study, fresh formic acid was used to repeatedly pretreat the bamboo powder, and the effect of multiple treatments on the physicochemical structure of the bamboo powder was investigated using changes in fractions, enzymatic hydrolysis, hydrophilicity, cellulose crystallinity, and lignin structure.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 9 Bankowa St., 40-007 Katowice, Poland.
Carnivorous plants have fascinated botanists and ecologists with their various unusual adaptations in organ structure, physiology, and complex interactions with other organisms since the time of Charles Darwin. Species of the genus (bladderworts, family Lentibulariaceae) are carnivorous plants that prey mainly on invertebrates using traps (bladders) of leaf origin. In the traps, there are glandular trichomes called quadrifids, which produce digestive enzymes and absorb the products of prey digestion.
View Article and Find Full Text PDFBiology (Basel)
January 2025
National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
Molybdenum (Mo) is widely used as a micronutrient fertilizer to improve plant growth and soil quality. However, the interactions between cell wall biosynthesis and molybdenum have not been explored sufficiently. This study thoroughly investigated the regulatory effects of different concentrations of Mo on tobacco cell wall biosynthesis from physiological and metabolomic aspects.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore.
Biological materials, such as bamboo, are naturally optimized composites with exceptional mechanical properties. Inspired by such natural composites, traditional methods involve extracting nanofibers from natural sources and applying them in composite materials, which, however, often results in less ideal mechanical properties. To address this, this study develops a bottom-up nanofiber assembly strategy to create strong fiber-reinforced composite hydrogels inspired by the hierarchical assembly of bamboo.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China. Electronic address:
n-Alkyltrimethylammonium bromide (CTAB)-based deep eutectic solvent (DESs) has potential in the efficient delignification and utilization of carbohydrates in biomass. In this research, DESs containing Brønsted acid and Lewis acid were prepared with CTAB (alkyl-chain length 12-18), organic acids and metal chlorides, and the optimal treatment conditions were acquired by pretreatment optimization. Through the pretreatment with TTAB/LCA/Fe (1:4:0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!