Cellulose-hemicellulose interactions - A nanoscale view.

Carbohydr Polym

Department of Materials Engineering, KU Leuven, Leuven, Belgium.

Published: October 2021

In this work, we study interactions of five different hemicellulose models, i.e. Galactoglucomannan, O-Acetyl-Galactoglucomannan, Fuco-Galacto-Xyloglucan, 4-O-Methylglucuronoxylan, and 4-O-Methylglucuronoarabinoxylan, and their respective binding strength to cellulose nanocrystals by molecular dynamics simulations. Glucuronoarabinoxylan showed the highest free energy of binding, whereas Xyloglucan had the lowest interaction energies amongst the five models. We further performed simulated shear tests and concluded that failure mostly happens at the inter-molecular interaction level within the hemicellulose fraction, rather than at the interface with cellulose. The presence of water molecules seems to have a weakening effect on the interactions of hemicellulose and cellulose, taking up the available hydroxyl groups on the surface of the cellulose for hydrogen bonding. We believe that these studies can shed light on better understanding of plant cell walls, as well as providing evidence on variability of the structures of different plant sources for extractions, purification, and operation of biorefineries.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2021.118364DOI Listing

Publication Analysis

Top Keywords

interactions hemicellulose
8
cellulose-hemicellulose interactions
4
interactions nanoscale
4
nanoscale view
4
view work
4
work study
4
study interactions
4
hemicellulose models
4
models galactoglucomannan
4
galactoglucomannan o-acetyl-galactoglucomannan
4

Similar Publications

Effects of Multiple Treatments of Formic Acid on the Chemical Properties and Structural Features of Bamboo Powder.

Molecules

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.

Under mild conditions, formic acid effectively separates the components of lignocellulose, removing the majority of the hemicellulose and lignin from the cellulose. However, it has not yet been determined if multiple treatments with fresh formic acid may totally remove hemicellulose and lignin. In this study, fresh formic acid was used to repeatedly pretreat the bamboo powder, and the effect of multiple treatments on the physicochemical structure of the bamboo powder was investigated using changes in fractions, enzymatic hydrolysis, hydrophilicity, cellulose crystallinity, and lignin structure.

View Article and Find Full Text PDF

Cell Wall Microdomains Analysis in the Quadrifids of .

Int J Mol Sci

January 2025

Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 9 Bankowa St., 40-007 Katowice, Poland.

Carnivorous plants have fascinated botanists and ecologists with their various unusual adaptations in organ structure, physiology, and complex interactions with other organisms since the time of Charles Darwin. Species of the genus (bladderworts, family Lentibulariaceae) are carnivorous plants that prey mainly on invertebrates using traps (bladders) of leaf origin. In the traps, there are glandular trichomes called quadrifids, which produce digestive enzymes and absorb the products of prey digestion.

View Article and Find Full Text PDF

Molybdenum Can Regulate the Expression of Molybdase Genes, Affect Molybdase Activity and Metabolites, and Promote the Cell Wall Bio-Synthesis of Tobacco Leaves.

Biology (Basel)

January 2025

National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.

Molybdenum (Mo) is widely used as a micronutrient fertilizer to improve plant growth and soil quality. However, the interactions between cell wall biosynthesis and molybdenum have not been explored sufficiently. This study thoroughly investigated the regulatory effects of different concentrations of Mo on tobacco cell wall biosynthesis from physiological and metabolomic aspects.

View Article and Find Full Text PDF

Biological materials, such as bamboo, are naturally optimized composites with exceptional mechanical properties. Inspired by such natural composites, traditional methods involve extracting nanofibers from natural sources and applying them in composite materials, which, however, often results in less ideal mechanical properties. To address this, this study develops a bottom-up nanofiber assembly strategy to create strong fiber-reinforced composite hydrogels inspired by the hierarchical assembly of bamboo.

View Article and Find Full Text PDF

n-Alkyltrimethylammonium bromide (CTAB)-based deep eutectic solvent (DESs) has potential in the efficient delignification and utilization of carbohydrates in biomass. In this research, DESs containing Brønsted acid and Lewis acid were prepared with CTAB (alkyl-chain length 12-18), organic acids and metal chlorides, and the optimal treatment conditions were acquired by pretreatment optimization. Through the pretreatment with TTAB/LCA/Fe (1:4:0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!