The reductive carboxylation activity of heterotetrameric pyruvate synthases from hyperthermophilic archaea.

Biochem Biophys Res Commun

CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. Electronic address:

Published: October 2021

AI Article Synopsis

  • The study focuses on cloning, expressing, and purifying six heterotetrameric pyruvate synthase enzymes (PFORs) from hyperthermophilic archaea.
  • Four out of the six PFORs were found to have reductive decarboxylation activities, with the PFOR from Pyrolobus fumarii exhibiting the highest activity and red/ox ratio.
  • The results highlight the diversity in reductive carboxylation activities among these enzymes, providing insights into the autotrophic carbon fixation processes in extreme environments like thermal vents.

Article Abstract

Pyruvate synthase (pyruvate:ferredoxin oxidoreductase, PFOR) catalyzes the interconversion of acetyl-CoA and pyruvate, but the reductive carboxylation activities of heterotetrameric PFORs remain largely unknown. In this study, we cloned, expressed, and purified selected six heterotetrameric PFORs from hyperthermophilic archaea. The reductive carboxylation activities of these heterotetrameric PFORs were measured at 70 °C and the ratio of reductive carboxylation activity to oxidative decarboxylation activity (red/ox ratio) were calculated. Four out of six showed reductive decarboxylation activities. Among them, the PFOR from Pyrolobus fumarii showed the highest reductive carboxylation activities and the highest red/ox ratio, which were 54.32 mU/mg and 0.51, respectively. The divergence of the reductive carboxylation activities and the red/ox ratios of heterotetrameric PFORs in hyperthermophilic archaea indicate the diversity of the functions of PFOR over long-term evolution. This can help us better understand the autotrophic CO fixation process in thermal vent, or in other CO-rich high temperature habitat.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2021.07.091DOI Listing

Publication Analysis

Top Keywords

reductive carboxylation
24
carboxylation activities
16
heterotetrameric pfors
16
hyperthermophilic archaea
12
carboxylation activity
8
activities heterotetrameric
8
pfors hyperthermophilic
8
red/ox ratio
8
reductive
7
heterotetrameric
5

Similar Publications

Doxorubicin is an anthracycline antibiotic widely used in cancer therapy. However, its cytotoxic properties affect both cancerous and healthy cells. Combining doxorubicin with antioxidants such as ferulic acid reduces its side effects, while simultaneously enhancing therapeutic effectiveness.

View Article and Find Full Text PDF

Submerged plants can thrive entirely underwater, playing a crucial role in maintaining water quality, supporting aquatic organisms, and enhancing sediment stability. However, they face multiple challenges, including reduced light availability, fluctuating water conditions, and limited nutrient access. Despite these stresses, submerged plants demonstrate remarkable resilience through physiological and biochemical adaptations.

View Article and Find Full Text PDF

Amino acid analogues with a phosphorus-containing moiety replacing the carboxylic group are promising sources of biologically active compounds. The -phosphinic group, with hydrogen-phosphorus-carbon (H-P-C) bonds and a flattened tetrahedral configuration, is a bioisostere of the carboxylic group. Consequently, amino--phosphinic acids undergo substrate-like enzymatic transformations, leading to new biologically active metabolites.

View Article and Find Full Text PDF

A Borenium-Borane Composite for Exhaustive Reduction of Oxo-Chemicals.

J Am Chem Soc

January 2025

School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Materials, Henan Normal University, Xinxiang, Henan453007,China.

Borenium ions have attracted significant attention in organic transformations due to their strong Lewis acidity. The reported borenium ions are often stabilized by sterically demanding substituents and strong coordination bonds. Herein, we have synthesized a small steric borenium-equivalent NHBHOTf and subjected it to the exhaustive reduction of a carboxylic functional group to a methyl group, which shows broad functional group tolerance.

View Article and Find Full Text PDF

Cobalt-catalyzed reduction of esters to alkanes.

Chem Commun (Camb)

January 2025

School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar-752050, India.

The reduction of aryl carboxylates to methyl and allyl arene was attained using a well-defined cobalt catalyst. This catalytic transformation employs only a sub-stoichiometric amount of base, and diethylsilane as a reductant. Catalytic activation of the Si-H bond of the silanes, C-O bond of the ester, and silyl ether intermediates by cobalt is crucial to achieving exhaustive reduction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!