Post-treatments of polydopamine coatings influence cellular response.

Colloids Surf B Biointerfaces

Interdisciplinary Nanoscience Center (iNANO), Faculty of Natural Sciences, Aarhus University, Denmark; Sino-Danish Center for Education and Research, Denmark. Electronic address:

Published: November 2021

Polydopamine (PDA) is the final oxidation product of dopamine or other catecholamines. Since the first reports of PDA coatings starting around 2007, these coatings have been widely studied as a versatile and inexpensive one-step coating option for biomaterial functionalization. The coating attach to a wide range of materials and can subsequently be modified with biomolecules or nanoparticles. However, as a strong candidate for biomaterial research and even clinical use, it is important to unravel the changes in physico-chemical properties and the cell-PDA interaction as a function of heat sterilization procedures and shelf storage periods. Four groups were examined in this study: titanium (Ti), PDA-coated Ti samples and PDA-coated Ti samples either stored for up to two weeks at room temperature or heated at 121 °C for 24 h, respectively. We used X-ray Photoelectron Spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and Water contact angle (WCA) to characterize chemical composition and surface properties of the groups. Cell adhesion and proliferation was examined by three different cell types: human primary dermal fibroblasts (hDF), human epidermal keratinocytes (HaCaTs) and a murine preosteoblastic cell line (MC3T3-E1), respectively. Cells were cultured on PDA coated samples for 4 h, 3 days and 5 days. Both thermal treatment of PDA at 121℃ for 24 h and storage of the samples for 2 weeks increased the amount of quinone groups at the surface and decreased the amount of primary amine groups as detected by XPS and ToF-SIMS. Even though these surface reactions increased the WCA of the PDA coating, we found that the post-treatments increased cell proliferation for both hDFs, HaCaTs and MC3T3-E1 s as compared to pristine PDA. This emphasizes the importance of post-treatment and shelf-time for PDA coatings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2021.111972DOI Listing

Publication Analysis

Top Keywords

pda coatings
8
pda-coated samples
8
pda
7
post-treatments polydopamine
4
coatings
4
polydopamine coatings
4
coatings influence
4
influence cellular
4
cellular response
4
response polydopamine
4

Similar Publications

Recombinant collagen microneedles for transdermal delivery of antibacterial copper-DNA nanoparticles to treat skin and soft tissue infections.

J Control Release

January 2025

School of Pharmacy, Changzhou University, Changzhou 213164, China; School of Medical and Health Engineering, Changzhou University, Changzhou 213164, PR China. Electronic address:

Skin and soft tissue infections (SSTI) include bacterial infections of the skin, muscles, and connective tissue such as ligaments and tendons. SSTI in patients with immunocompromising diseases may lead to chronic, hard-to-heal infected wounds, resulting in disability, amputation, or even death. To treat SSTI and rebuild the defensive barrier of the skin, here we utilize recombinant type XVII collagen protein (rCol XVII) to construct biodegradable, regenerative collagen microneedles (rCol-MNs) for transdermal delivery of antibacterial agents.

View Article and Find Full Text PDF

Design and evaluation of a multi-responsive dual-modality bone-targeted drug delivery vehicle for the treatment of osteosarcoma.

Int J Pharm

January 2025

Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004 China; School of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China. Electronic address:

The combination of chemotherapy and photothermal therapy not only improves the therapeutic effect but also limits the side effects of drugs. Herein, a multi-responsive dual-modality bone-targeted drug delivery vehicle for the treatment of osteosarcoma was designed by utilizing alendronate sodium as a bone-targeting ligand for the targeted delivery of doxorubicin (DOX) loaded polydopamine nanoparticles (PDA NPs) coated with γ-polyglutamic acid (APC@PDA/DOX NPs). The average size of spherical NPs was 140.

View Article and Find Full Text PDF

Antibacterial and osteogenic gain strategy on titanium surfaces for preventing implant-related infections.

Colloids Surf B Biointerfaces

December 2024

College of Chemical Engineering, Xinjiang Normal University, 102 Xinyi Road, Urumqi 830054, P.R. China. Electronic address:

Infection and insufficient osseointegration are the primary factors leading to the failure of titanium-based implants. Surface coating modifications that combine both antibacterial and osteogenic properties are commonly employed strategies. However, the challenge of achieving rapid antibacterial action and consistent osteogenesis with these coatings remains unresolved.

View Article and Find Full Text PDF

New insights in the low-temperature-dependent formation of amorphous titania-coated magnetic polydopamine nanocomposites for the adsorption of methylene blue.

Sci Rep

January 2025

Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guian, 550025, China.

Removal of accumulated dyes from the environment water bodies is essential to prevent further harm to humans. The development and design of new alternative nanoadsorbents that can conveniently, quickly, and efficiently improve the adsorption and removal efficiency of dyes from wastewater remains a huge challenge. An amorphous TiO with a magnetic core-shell-shell structure (FeO@PDA@a-TiO, denoted as FPaT) was constructed through a series of steps.

View Article and Find Full Text PDF

An ammonium perchlorate (AP) composite system with double-coating encapsulation based on the interfacial polymerization behavior of dopamine (DA) in Pickering emulsions was designed to enhance the combustion performance of HTPB-based propellants. The composite system proved highly effective in mitigating the agglomeration issues associated with iron oxide nanoparticles (FeO NPs) as catalysts, with the AP exhibiting superior performance compared to the composite comprising pure FeO NPs. The results of the thermal decomposition experiments showed that the HTD temperature of AP@PDA@FeO was reduced to 318.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!