This study for the first time pursues two crucial aims of using Naproxen as a non-steroidal anti-inflammatory drug in a better, non-invasive setting and introducing a simple and biocompatible nano-carrier (Mn/CQD/SiO) which is a magneto carbon quantum dots modified with mesoporous silica probe which can be served as a drug delivery and tracer system. SiOmodification was doneby mesoporous silica which improves biocompatibility and provideslow cytotoxicity. Naproxen was conjugated to the nano-probe to form Mn/CQD/SiO@naproxen and biodistribution was investigated. Physicochemical characteristics of the Mn/CQD/SiO@naproxen were investigated using FT-IR, SEM, TEM, UV-Vis and BET. Antiproliferation assay using MTT assay was performed on HEK-293 cells to determine the cytotoxity of Mn/CQD/SiO@naproxen. Relaxivity of Mn/CQD/SiO2 was examined thereafter. To investigate the imaging capability of Mn/CQD/SiO@naproxen and biodistribution of Naproxen, fluorescent imaging was done. To confirm the data, then the levels of COX Gene expression was determined. The specific surface area, pore volume, and pore radius were 44.4 m/g, 10.23 cm/g, and 25.9 nm respectively. MTT assay showed no cytotoxicity. Relaxivity of Mn/CQD/SiO was higher than conventional Gd-based contrast agent. Fluorescence imaging of Mn/CQD/SiO@naproxen showed the biodistribution of naproxen. COX Gene expression confirmed the biodistribution data. By increasing the accumulation in liver COX production reduced. All in all, unique features of Mn/CQD/SiO including biocompatibility, low toxicity, magnetic and fluorescence properties showed that it can be used in biomedical sciences.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioorg.2021.105211 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!