Background: Although ample knowledge exists about phenotype and function of cutaneous T lymphocytes, much less is known about the lymphocytic components of the skin's innate immune system.

Objective: To better understand the biologic role of cutaneous innate lymphoid cells (ILCs), we investigated their phenotypic and molecular features under physiologic (normal human skin [NHS]) and pathologic (lesional skin of patients with atopic dermatitis [AD]) conditions.

Methods: Skin punch biopsies and reduction sheets as well as blood specimens were obtained from either patients with AD or healthy individuals. Cell and/or tissue samples were analyzed by flow cytometry, immunohistochemistry, and single-cell RNA sequencing or subjected to in vitro/ex vivo culture.

Results: Notwithstanding substantial quantitative differences between NHS and AD skin, we found that the vast majority of cutaneous ILCs belong to the CRTH2 subset and reside in the upper skin layers. Single-cell RNA sequencing of cutaneous ILC-enriched cell samples confirmed the predominance of biologically heterogeneous group 2 ILCs and, for the first time, demonstrated considerable ILC lineage infidelity (coexpression of genes typical of either type 2 [GATA3 and IL13] or type 3/17 [RORC, IL22, and IL26] immunity within individual cells) in lesional AD skin, and to a much lesser extent, in NHS. Similar events were demonstrated in ILCs from skin explant cultures and in vitro expanded ILCs from the peripheral blood.

Conclusion: These findings support the concept that instead of being a stable entity with well-defined components, the skin immune system consists of a network of highly flexible cellular players that are capable of adjusting their function to the needs and challenges of the environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9130781PMC
http://dx.doi.org/10.1016/j.jaci.2021.07.025DOI Listing

Publication Analysis

Top Keywords

innate lymphoid
8
lineage infidelity
8
atopic dermatitis
8
skin
8
lesional skin
8
single-cell rna
8
rna sequencing
8
ilcs
5
single-cell analysis
4
analysis reveals
4

Similar Publications

Tertiary lymphoid structures (TLSs) are de novo ectopic lymphoid aggregates that regulate immunity in chronically inflamed tissues, including tumours. Although TLSs form due to inflammation-triggered activation of the lymphotoxin (LT)-LTβ receptor (LTβR) pathway, the inflammatory signals and cells that induce TLSs remain incompletely identified. Here we show that interleukin-33 (IL-33), the alarmin released by inflamed tissues, induces TLSs.

View Article and Find Full Text PDF

In prednisone-dependent severe asthma, uncontrolled sputum eosinophilia is associated with increased numbers of group 2 innate lymphoid cells (ILC2s). These cells represent a relatively steroid-insensitive source of interleukin-5 (IL-5) and IL-13 and are considered critical drivers of asthma pathology. The abundance of ILC subgroups in severe asthma with neutrophilic or mixed granulocytic (both eosinophilic and neutrophilic) airway inflammation, prone to recurrent infective exacerbations, remains unclear.

View Article and Find Full Text PDF

The root of asthma can be linked to early life, with prenatal environments influencing risk. We investigate the effects of maternal asthma on the offspring's lungs during fetal and adult life. Adult offspring of asthmatic mothers show an increase in lung group 2 innate lymphoid cell (ILC2) number and function with allergen-induced lung inflammation.

View Article and Find Full Text PDF

Microbiota-derived proteins synergize with IL-23 to drive IL22 production in model type 3 innate lymphoid cells.

PLoS One

January 2025

Center for Inflammation, Immunity, & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America.

Microbiota-induced production of IL-22 by type 3 innate lymphoid cells (ILC3) plays an important role in maintaining intestinal health. Such IL-22 production is driven, in part, by IL-23 produced by gut myeloid cells that have sensed select microbial-derived mediators. The extent to which ILC3 can directly respond to microbial metabolites via IL-22 production is less clear, in part due to the difficulty of isolating and maintaining sufficient numbers of viable ILC3 ex vivo.

View Article and Find Full Text PDF

DNA-binding affinity and specificity determine the phenotypic diversity in BCL11B-related disorders.

Am J Hum Genet

January 2025

Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany; Institute of Clinical Human Genetics, University Hospital Regensburg, 93053 Regensburg, Germany. Electronic address:

BCL11B is a Cys2-His2 zinc-finger (C2H2-ZnF) domain-containing, DNA-binding, transcription factor with established roles in the development of various organs and tissues, primarily the immune and nervous systems. BCL11B germline variants have been associated with a variety of developmental syndromes. However, genotype-phenotype correlations along with pathophysiologic mechanisms of selected variants mostly remain elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!