Introduction: Obesity causes many life-threatening diseases. It is important to develop effective approaches for obesity treatment. Oral supplementation with spermidine retards age-related processes, but its influences on obesity and various metabolic tissues remain largely unknow. This study aims to investigate the effects of oral spermidine on brown adipose tissue (BAT) and skeletal muscle as well as its roles in counteracting obesity and metabolic disorders.
Methods And Results: Spermidine is orally administrated into high-fat diet (HFD)-fed mice. The weight gain, insulin resistance, and hepatic steatosis are attenuated by oral spermidine in HFD-fed mice, accompanied by an alleviation of white adipose tissue inflammation. Oral spermidine promotes BAT activation and metabolic adaptation of skeletal muscle in HFD-fed mice, evidenced by UCP-1 induction and CREB activation in both tissues. Notably, oral spermidine upregulates tyrosine hydroxylase in hypothalamus of HFD-fed mice; spermidine treatment increases tyrosine hydroxylase expression and norepinephrine production in neurocytes, which leads to CREB activation and UCP-1 induction in brown adipocytes and myotubes. Spermidine also directly promotes UCP-1 and PGC-1α expression in brown adipocytes and myotubes.
Conclusion: Spermidine serves as an oral supplement to attenuate obesity and metabolic disorders through hypothalamus-dependent or -independent BAT activation and skeletal muscle adaptation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mnfr.202100315 | DOI Listing |
Free Radic Biol Med
December 2024
Department of Periodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases (Nanjing Medical University), Nanjing, 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China. Electronic address:
Nutr Res
December 2024
Department of Nutrition, University of California, Davis, California. Electronic address:
This pilot dose-escalation study evaluated the absorption and metabolism of a novel fasting mimetic formulation containing spermidine, nicotinamide, palmitoylethanolamide (PEA), and oleoylethanolamide (OEA) taken as oral supplements in young adults. Five healthy men consumed a standardized breakfast, followed by control (wheat flour) or low, medium, or high doses of supplements containing spermidine, nicotinamide, PEA, and OEA 2 hours later. Blood was drawn at 0, 1, 2, and 4 hours after the supplement (2, 3, 4, and 6 hours postprandial).
View Article and Find Full Text PDFPhysiol Rep
October 2024
Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
Skeletal muscle has a high regenerative ability and maintains homeostasis by rapidly regenerating from frequent damage caused by intense exercise or trauma. In sports, skeletal muscle damage occurs frequently due to intense exercise, so practical methods to promote skeletal muscle regeneration are required. Recent studies have shown that it may be possible to promote skeletal muscle regeneration through new pathways, such as promoting autophagy and improving mitochondrial function.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China.
Int J Biol Macromol
November 2024
Stomatology Center of Jingyue Campus, The First Hospital of Jilin University, Jilin University, Changchun 130021, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Jilin University, Changchun 130021, China; Jilin Provincial Engineering Laboratory of Bone Regeneration and Tissue Repair Materials, Jilin University, Changchun 130021, China; Jilin Provincial Joint University-Industry Innovation Laboratory for Oral Biomedical Materials, Jilin University, Changchun 130021, China. Electronic address:
Bacterial infection, reactive oxygen species (ROS) accumulation, and persistent inflammation pose significant challenges in the treatment of periodontitis. However, the current single-modal strategy makes achieving the best treatment effect difficult. Herein, we developed a double-network hydrogel composed of Pluronic F127 (PF-127) and hyaluronic acid methacrylate (HAMA) loaded with spermidine-modified mesoporous polydopamine nanoparticles (M@S NPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!