Dexmedetomidine (DEX) has multiple biological effects. Here, we investigated the neuroprotective role and molecular mechanism of DEX against lipopolysaccharide (LPS)-induced hippocampal neuronal apoptosis. Sprague Dawley rats were intraperitoneally injected with LPS (10 mg/kg) and/or DEX (30 µg/kg). We found that DEX improved LPS-induced alterations of hippocampal microstructure (necrosis and neuronal loss in the CA1 and CA3 regions) and ultrastructure (mitochondrial damage). DEX also attenuated LPS-induced inflammation and hippocampal apoptosis by inhibiting the increase of interleukin-1β, interleukin-6, interleukin-18, and tumor necrosis factor-α levels and downregulating the expression of mitochondrial apoptosis pathway-related proteins. Moreover, DEX prevented the LPS-induced activation of the c-Myc/chloride intracellular channel 4 (CLIC4) pathway. DEX inhibited the p38 MAPK pathway, but not JNK and ERK. To further clarify whether DEX alleviated LPS-induced neuronal apoptosis through the p38 MAPK/c-Myc/CLIC4 pathway, we treated PC12 cells with p38 MAPK inhibitor SB203582 (10 µM). DEX had the same effect as SB203582 in reducing the protein and mRNA expression of c-Myc and CLIC4. Furthermore, DEX and SB203582 diminished LPS-induced apoptosis, indicated by decreased Bax and Tom20 fluorescent double-stained cells, reduced annexin V-FITC/PI apoptosis rate, and reduced protein expression levels of Bax, cytochrome C, cleaved caspase-9, and cleaved caspase-3. Taken together, the findings indicate that DEX attenuates LPS-induced hippocampal neuronal apoptosis by regulating the p38 MAPK/c-Myc/CLIC4 signaling pathway. These findings provide new insights into the mechanism of Alzheimer's disease and depression and may help aid in drug development for these diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12035-021-02512-9 | DOI Listing |
Small
December 2024
Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China.
Mitochondrial dysfunction plays an important role in neuroinflammation and cognitive impairment in Alzheimer's disease (AD). Herein, this work designs a mitochondria-targeted micelle CsA-TK-SS-31 (CTS) to block the progression of AD by simultaneously alleviating mitochondrial dysfunction in microglia and neurons. The mitochondria-targeted peptide SS-31 drives cyclosporin A (CsA) to penetrate the blood-brain barrier (BBB) and delivers CsA to mitochondria of microglia and neurons in the brains of 5 × FAD mice.
View Article and Find Full Text PDFCureus
November 2024
Institute of Ophthalmology, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University (AMU), Aligarh, IND.
Background: Diabetes mellitus (DM) is a global disease that is strongly associated with both microvascular and macrovascular complications. A significant proportion of individuals with diabetes develop diabetic retinopathy (DR), a microvascular complication that can lead to blindness, particularly in working-age adults. Diabetes adversely affects the entire neurosensory retina, with accelerated neuronal apoptosis and activation or altered metabolism of neuroretinal supporting cells.
View Article and Find Full Text PDFToxicol Res (Camb)
December 2024
Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Khorasan Razavi, Mashhad, Azadi Square, 9177948954, Iran.
Objective: Alzheimer's disease (ad) is a progressive and degenerative disorder of the central nervous system that is associated with cognitive and memory impairment. The main factors which have been implicated in neurodegeneration of ad are oxidative stress and cholinergic neurons dysfunction. Here, we examined the effects of auraptene, a novel acetylcholinesterase (AChE) inhibitor, on hydrogen peroxide (HO)-induced cell death in PC12 cells.
View Article and Find Full Text PDFToxicol Res (Camb)
December 2024
Department of Anesthesiology, Peking University Third Hospital Qinhuangdao Hospital, No. 15, Yufeng Road, West Yanshan Street, Harbor District, Qinhuangdao, Hebei province 066000, China.
Background: Sevoflurane (Sev) is a common anesthetic used during surgery, but research on its induction of neurotoxicity and learning memory impairment is insufficient. This study aimed to explore the role of Circular RNA tousled like kinase 1 (circTLK1) and its target microRNA (miR)-374b-5p in Sev-induced neurotoxicity and learning memory impairment.
Methods: Mouse hippocampal neuronal HT22 cells and SD rats were treated with Sev.
Dev Neurobiol
January 2025
Department of Cerebrovascular Surgery, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, China.
Growth differentiation factor 15 (GDF15) can be induced under various stress conditions. This study aimed to explore the role of GDF15 in oxygen-glucose deprivation/reoxygenation (OGD/R)-induced HT22 cells. OGD/R was employed to induce the HT22 cell model, and GDF15 expression was upregulated via transfection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!