In this study, we employed several experimental techniques to investigate structure and magnetic properties of poly(p-xylylene)-MnSb composites synthesized by low-temperature vapor deposition polymerization technique and MnSb films deposited at various temperatures. The presence of MnSb nanocrystallites in the studied films was verified by the results of X-ray diffraction, electron microscopy and Raman spectroscopy studies. The obtained data revealed the formation of Sb-rich sublayer with well-oriented Sb grains near the susbtrate, which seems to act as a buffer for the consequent poly(p-xylylene)-MnSb or MnSb layer growth. Increasing the polymer content results in qualitative change of surface morphology of studied films. At high polymer content the hybrid nanocomposite with MnSb nanoparticles embedded into poly(p-xylylene) matrix is formed. All investigated samples demonstrated detectable ferromagnetic response at room temperature, while the parameters of this response revealed a complex correlation with nominal composition, presented crystal phases and surface morphology of studied films. Estimated values of the Curie temperature of the samples are close to that of bulk MnSb.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8346481 | PMC |
http://dx.doi.org/10.1038/s41598-021-95475-9 | DOI Listing |
Langmuir
January 2025
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
Spin glass (SG), in which the spins are glassy, has attracted broad attention for theoretical study and prospective application. SG states are generally related to disordered or frustrated spin systems, which are usually observed in inorganic magnets. Herein, supramolecular magnetic ionic liquid (TMTBDI[FeCl]) self-assemblies are prepared by solution self-assembly via hydrophobic and π-π stacking interactions.
View Article and Find Full Text PDFSci Rep
January 2025
Cellulose and Paper Department, National Research Centre, Cairo, 12622, Egypt.
Compounds containing the piperidine group are highly attractive as building blocks for designing new drugs. Functionalized piperidines are of significant interest due to their prevalence in the pharmaceutical field. Herein, 3-oxo-3-(piperidin-1-yl) propanenitrile has been synthesized, and piperidine-based sodium alginate/poly(vinyl alcohol) films have been prepared.
View Article and Find Full Text PDFDalton Trans
January 2025
Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile.
Recalcitrant pollutants are challenging to degrade during water treatment processes. Methylene blue (MB), a cationic dye, is particularly resistant to degradation and is environmentally persistent. Heterogeneous photocatalysis has emerged as a suitable strategy for removing such pollutants from water.
View Article and Find Full Text PDFACS Nano
January 2025
Brno University of Technology, Central European Institute of Technology, Purkyňova 123, 612 00 Brno, Czech Republic.
Vanadium dioxide (VO) has received significant interest in the context of nanophotonic metamaterials and memories owing to its reversible insulator-metal transition associated with significant changes in its optical and electronic properties. The phase transition of VO has been extensively studied for several decades, and the ways how to control its hysteresis characteristics relevant for memory applications have significantly improved. However, the hysteresis dynamics and stability of coexisting phases during the transition have not been studied on the level of individual single-crystal VO nanoparticles (NPs), although they represent the fundamental component of ordinary polycrystalline films and can also act like nanoscale memory units on their own.
View Article and Find Full Text PDFSmall
January 2025
Departamentde Física Aplicada-IDF. Univérsitat Politécnica de Valéncia, Camí de Vera s/n, Valencia, 46022, Spain.
Metal chalcogenides have been extensively studied for thermoelectric applications. Among other metal chalcogenides, silver selenide (AgSe) is considered one of the most promising n-type semiconducting materials for thermoelectric applications due to its low band gap value, Seebeck coefficient, and superior power factor (PF) rendered at room temperature. However, one of the main drawbacks of using AgSe as a thermoelectric material on a large scale is the time-consuming physical methods to obtain them, and the need for high vacuum synthesis conditions as well as high-cost.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!