Aortic dissection (AD) is one of the fatal and complex conditions. Since there is a lack of a specific treatment guideline for type-B AD, a better understanding of patient-specific hemodynamics and therapy outcomes can potentially control the progression of the disease and aid in the clinical decision-making process. In this work, a patient-specific geometry of type-B AD is reconstructed from computed tomography images, and a numerical simulation using personalised computational fluid dynamics (CFD) with three-element Windkessel model boundary condition at each outlet is implemented. According to the physiological response of beta-blockers to the reduction of left ventricular contractions, three case studies with different heart rates are created. Several hemodynamic features, including time-averaged wall shear stress (TAWSS), highly oscillatory, low magnitude shear (HOLMES), and flow pattern are investigated and compared between each case. Results show that decreasing TAWSS, which is caused by the reduction of the velocity gradient, prevents vessel wall at entry tear from rupture. Additionally, with the increase in HOLMES value at distal false lumen, calcification and plaque formation in the moderate and regular-heart rate cases are successfully controlled. This work demonstrates how CFD methods with non-invasive hemodynamic metrics can be developed to predict the hemodynamic changes before medication or other invasive operations. These consequences can be a powerful framework for clinicians and surgical communities to improve their diagnostic and pre-procedural planning.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8346572 | PMC |
http://dx.doi.org/10.1038/s41598-021-95315-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!