Shiga toxin-producing (STEC) O103 strains have been recently attributed to various foodborne outbreaks in the United States. Due to the emergence of antibiotic-resistant strains, lytic phages are considered as alternative biocontrol agents. This study was to biologically and genomically characterize two STEC O103-infecting bacteriophages, vB_EcoP-Ro103C3lw (or Ro103C3lw) and vB_EcoM-Pr103Blw (or Pr103Blw), isolated from an organic farm. Based on genomic and morphological analyses, phages Ro103C3lw and Pr103Blw belonged to and families, respectively. Ro103C3lw contained a 39,389-bp double-stranded DNA and encoded a unique tail fiber with depolymerase activity, resulting in huge plaques. Pr103Blw had an 88,421-bp double-stranded DNA with 26 predicted tRNAs associated with the enhancement of the phage fitness. Within each phage genome, no virulence, antibiotic-resistant, and lysogenic genes were detected. Additionally, Ro103C3lw had a short latent period (2 min) and a narrow host range, infecting only STEC O103 strains. By contrast, Pr103Blw had a large burst size (152 PFU/CFU) and a broad host range against STEC O103, O26, O111, O157:H7, and Javiana strains. Furthermore, both phages showed strong antimicrobial activities against STEC O103:H2 strains. The findings provide valuable insight into these two phages' genomic features with the potential antimicrobial activities against STEC O103.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8303462 | PMC |
http://dx.doi.org/10.3390/microorganisms9071527 | DOI Listing |
J Med Microbiol
January 2025
Field Service - South East and London, UK Health Security Agency, London, UK.
Shiga toxin-producing (STEC) infections are of public health concern as STEC can cause large national foodborne outbreaks of severe gastrointestinal disease, particularly in the young and elderly. In recent years, the implementation of PCR by diagnostic microbiology laboratories has improved the detection of STEC, and there has been an increase in notifications of cases of non-O157 STEC. However, the extent this increase in caseload can be attributed to the improved detection by PCR, or a true increase in non-O157 STEC infections, is unknown.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
College of Veterinary Medicine, Southwest University, Tiansheng Road NO.2, Chongqing, China.
Shiga toxin-producing Escherichia coli (STEC) is one of the major pathogens responsible for severe foodborne infections, and the common serotypes include E. coli O157, O26, O45, O103, O111, O121, and O145. Vaccination has the potential to prevent STEC infections, but no licensed vaccines are available to provide protection against multiple STEC infections.
View Article and Find Full Text PDFFood Res Int
November 2024
Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL, USA. Electronic address:
J Med Microbiol
November 2024
Gastrointestinal Bacteria Reference Unit, UK Health Security Agency, Colindale, London, UK.
Shiga toxin-producing (STEC) are zoonotic, gastrointestinal pathogens characterized by the presence of the Shiga toxin () gene. Historically, STEC O157:H7 clonal complex (CC) 11 has been the most clinically significant serotype; however, recently there has been an increase in non-O157 STEC serotypes, including STEC O103:H2 belonging to CC17. STEC O103:H2 is an STEC serotype frequently isolated in England, although little is known about the epidemiology, clinical significance, associated public health burden or evolutionary context of this strain.
View Article and Find Full Text PDFSci Rep
October 2024
Department of Biotechnology, Ghent University, Valentin Vaerwyckweg 1, Gent, 9000, Belgium.
Shiga toxin-producing Escherichia coli (STEC) is a foodborne pathogen with 6,534 annual reported cases in the EU in 2021. This pathotype generally contains strains with smooth LPS with O-antigen serogroup O157 being the predominant serogroup in the US. However, non-O157 STEC serogroups are becoming increasingly prevalent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!