AI Article Synopsis

  • The study explored the impact of a composite microbial culture (CES-1) on the treatment of textile dye wastewater, examining factors like water quality and microbial community dynamics.
  • The bioaugmentation led to significant improvements in the removal efficiencies of various pollutants, including COD and color intensity, with reductions in sludge production by up to 22%.
  • Metagenomic analysis revealed increased microbial diversity, suggesting that CES-1 facilitated the evolution of effective microbial communities for enhanced degradation of azo dyes and related compounds.

Article Abstract

Effects of bioaugmentation of the composite microbial culture CES-1 on a full scale textile dye wastewater treatment process were investigated in terms of water quality, sludge reduction, dynamics of microbial community structures and their functional genes responsible for degradation of azo dye, and other chemicals. The removal efficiencies for Chemical Oxygen Demand (COD), Total Nitrogen (T-N), Total Phosphorus (T-P), Suspended Solids (SS), and color intensity (96.4%, 78.4, 83.1, 84.4, and 92.0, respectively) 300-531 days after the augmentation were generally improved after bioaugmentation. The denitrification linked to T-N removal appeared to contribute to the concomitant COD removal that triggered a reduction of sludge (up to 22%) in the same period of augmentation. Azo dye and aromatic compound degradation and other downstream pathways were highly metabolically interrelated. Augmentation of CES-1 increased microbial diversity in the later stages of augmentation when a strong microbial community selection of , , , sp., and sp. occurred. Herein, there might be a possibility that the CES-1 augmentation could facilitate the indigenous microbial community successions so that the selected communities made the augmentation successful. The metagenomic analysis turned out to be a reasonable and powerful tool to provide with new insights and useful biomarkers for the complex environmental conditions, such as the full scale dye wastewater treatment system undergoing bioaugmentation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8306160PMC
http://dx.doi.org/10.3390/microorganisms9071503DOI Listing

Publication Analysis

Top Keywords

full scale
12
dye wastewater
12
microbial community
12
treatment system
8
textile dye
8
bioaugmentation composite
8
culture ces-1
8
wastewater treatment
8
azo dye
8
augmentation
6

Similar Publications

Maternal Glycemia and Its Pattern Associated with Offspring Neurobehavioral Development: A Chinese Birth Cohort Study.

Nutrients

January 2025

Department of Maternal and Child Health, School of Public Health, Peking University, Beijing 100191, China.

Background/objectives: This study investigates the impact of maternal glycemic levels during early and late pregnancy on offspring neurodevelopment in China.

Methods: Fasting plasma glucose (FPG) and triglyceride (TG) levels were measured in maternal blood during pregnancy, and the TyG index was calculated to assess insulin resistance. Hyperglycemia was defined as FPG > 5.

View Article and Find Full Text PDF

Quantum dot-polymer composites have the advantages of high luminescent quantum yield (PLQY), narrow emission half-peak full width (FWHM), and tunable emission spectra, and have broad application prospects in display and lighting fields. Research on quantum dots embedded in polymer films and plates has made great progress in both synthesis technology and optical properties. However, due to the shortcomings of quantum dots, such as cadmium selenide (CdSe), indium phosphide (InP), lead halide perovskite (LHP), poor water, oxygen, and light stability, and incapacity for large-scale synthesis, their practical application is still restricted.

View Article and Find Full Text PDF

Recent developments in single-cell multi-omics technologies have provided the ability to identify diverse cell types and decipher key components of the tumor microenvironment (TME), leading to important advancements toward a much deeper understanding of how tumor microenvironment heterogeneity contributes to cancer progression and therapeutic resistance. These technologies are able to integrate data from molecular genomic, transcriptomic, proteomics, and metabolomics studies of cells at a single-cell resolution scale that give rise to the full cellular and molecular complexity in the TME. Understanding the complex and sometimes reciprocal relationships among cancer cells, CAFs, immune cells, and ECs has led to novel insights into their immense heterogeneity in functions, which can have important consequences on tumor behavior.

View Article and Find Full Text PDF

A Large-Scale Agricultural Land Classification Method Based on Synergistic Integration of Time Series Red-Edge Vegetation Index and Phenological Features.

Sensors (Basel)

January 2025

National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China.

Agricultural land classification plays a pivotal role in food security and ecological sustainability, yet achieving accurate large-scale mapping remains challenging. This study presents methodological innovations through a multi-level feature enhancement framework that transcends traditional time series analysis. Using Shandong Province, northern China's agricultural heartland, as a case study, we first established a foundation with time series red-edge vegetation indices (REVI) from Sentinel-2 imagery, uniquely combining the normalized difference red edge index (NDRE) and plant senescence reflectance index (PSRI).

View Article and Find Full Text PDF

Borehole strainmeters are essential tools for observing crustal deformation. In long-term observational applications, the dynamic changes in crustal deformation over multi-year scales often exceed the single measurement range of borehole strainmeters. Expanding the measurement range while maintaining high precision is a critical technical challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!