This work is addressing the arenes' hydrogenation-the processes of high importance for petrochemical, chemical and pharmaceutical industries. Noble metal (Pd, Pt, Ru) nanoparticles (NPs) stabilized in hyper-cross-linked polystyrene (HPS) were shown to be active and selective catalysts in hydrogenation of a wide range of arenes (monocyclic, condensed, substituted, etc.) in a batch mode. HPS effectively stabilized metal NPs during hydrogenation in different medium (water, organic solvents) and allowed multiple catalyst reuses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8348316PMC
http://dx.doi.org/10.3390/molecules26154687DOI Listing

Publication Analysis

Top Keywords

noble metal
8
metal nanoparticles
8
stabilized hyper-cross-linked
8
hyper-cross-linked polystyrene
8
catalysts hydrogenation
8
nanoparticles stabilized
4
polystyrene effective
4
effective catalysts
4
hydrogenation arenes
4
arenes work
4

Similar Publications

Stabilizing the Fe Species of Nickel-Iron Double Hydroxide via Chelating Asymmetric Aldehyde-Containing THB Ligand for Long-Lasting Water Oxidation.

Adv Mater

December 2024

State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.

Nickel-iron layered double hydroxides (NiFe LDHs) are considered as promising substitutes for precious metals in oxygen evolution reaction (OER). However, most of the reported NiFe LDHs suffer from poor long-term stability because of the Fe loss during OER resulting in severe inactivation. Herein, a dynamically stable chelating interface through in situ transformation of asymmetric aldehyde-ligand (THB, 1,3,5-Tris(3'-hydroxy-4'-formylphenyl)-benzene) modified NiFe LDHs to anchor Fe and significantly enhance the OER stability is reported.

View Article and Find Full Text PDF

The escalating global problem of antibiotic contamination in wastewater demands innovative and sustainable remediation technologies. This paper presents a highly efficient photocatalytic material for water purification: a three-dimensional ultra-porous structure of interconnected GaN hollow microtetrapods (aero-GaN), its performance being further enhanced by noble metal nanodot functionalization. This novel aero-nanomaterial achieves more than 90 % of tetracycline degradation within 120 min under UV and solar irradiation, demonstrating its effectiveness in both static and dynamic flow conditions, with the potential for reuse and recyclability.

View Article and Find Full Text PDF

Understanding the origin of enhanced catalytic activity is critical to heterogeneous catalyst design. This is especially important for non-noble metal-based catalysts, notably metal oxides, which have recently emerged as viable alternatives for numerous thermal catalytic processes. For thermal catalytic reduction/hydrogenation using metal oxide nanoparticles, enhanced catalytic performance is typically attributed to increased surface area and oxygen vacancies.

View Article and Find Full Text PDF

A Regiospecific Co-Assembly Method to Functionalize Ordered Mesoporous Metal Oxides with Customizable Noble Metal Nanocrystals.

ACS Cent Sci

December 2024

Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.

An efficient regiospecific co-assembly (RSCA) strategy is developed for general synthesis of mesoporous metal oxides with pore walls precisely decorated by highly dispersed noble metal nanocrystals with customized parameters (diameter and composition). It features the rational utilization of the specific interactions between hydrophilic molecular precursors, hydrophobic noble metal nanocrystals, and amphiphilic block copolymers, to achieve regiospecific co-assembly as confirmed by molecular dynamics simulations. Through this RSCA strategy, we achieved a controllable synthesis of a variety of functional mesoporous metal oxide composites (e.

View Article and Find Full Text PDF

The high entropy alloy (HEA) possesses distinctive thermal stability and electronic characteristics, which exhibits substantial potential for diverse applications in electrocatalytic reactions. However, accurately controlling the size of HEA still remains a challenge, especially for the ultrasmall HEA nanoparticles. Herein, we firstly calculate and illustrate the size impact on the electronic structure of HEA and the adsorption energies of crucial intermediates in typical electrocatalytic reactions, such as the hydrogen evolution reaction (HER), oxygen reduction reaction (ORR), CO2 electroreduction (CO2RR) and NO3- electroreduction (NO3RR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!