Porous Aerogels and Adsorption of Pollutants from Water and Air: A Review.

Molecules

Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy.

Published: July 2021

AI Article Synopsis

  • Aerogels are lightweight, porous materials known for their impressive properties like low density and high surface area, making them useful in many areas.* -
  • They are particularly effective in environmental applications for removing toxic substances, such as heavy metal ions and organic dyes from wastewater, as well as pollutants from the air.* -
  • The review discusses different types of aerogels, including graphene oxide and silica-based ones, highlighting their various pollution-removal applications and potential for future improvements.*

Article Abstract

Aerogels are open, three-dimensional, porous materials characterized by outstanding properties, such as low density, high porosity, and high surface area. They have been used in various fields as adsorbents, catalysts, materials for thermal insulation, or matrices for drug delivery. Aerogels have been successfully used for environmental applications to eliminate toxic and harmful substances-such as metal ions or organic dyes-contained in wastewater, and pollutants-including aromatic or oxygenated volatile organic compounds (VOCs)-contained in the air. This updated review on the use of different aerogels-for instance, graphene oxide-, cellulose-, chitosan-, and silica-based aerogels-provides information on their various applications in removing pollutants, the results obtained, and potential future developments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8347855PMC
http://dx.doi.org/10.3390/molecules26154440DOI Listing

Publication Analysis

Top Keywords

porous aerogels
4
aerogels adsorption
4
adsorption pollutants
4
pollutants water
4
water air
4
air review
4
review aerogels
4
aerogels open
4
open three-dimensional
4
three-dimensional porous
4

Similar Publications

Defective boron nitride aerogels by salt template synthesis: A green adsorbent for tetracycline removal.

Environ Res

January 2025

Department of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, PR China; Shaanxi Province Key Laboratory of Corrosion and Protection, Xi'an University of Technology, Xi'an 710048, PR China. Electronic address:

Hexagonal boron nitride (h-BN) exhibits unique application potential in water purification due to its large specific surface area, high porosity, and chemical inertness. Designing adsorbents with highly active adsorption sites is one effective method to improve their adsorption capacities. In this study, porous h-BN aerogels containing multiple defect types (DP-BN) were synthesized by using salt templates.

View Article and Find Full Text PDF

Adsorption and immobilization of phosphorus in eutrophic lake water and sediments by a novel red soil based porous aerogel.

Water Res

December 2024

Key Laboratory of Poyang Lake Environment and Resource Utilization, Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China. Electronic address:

To effectively mitigate global eutrophication in lakes, regulating sedimentary phosphorus release remains a primary strategy. Enhancing the adsorption and stabilization performance of passivating agents is integral to addressing endogenous phosphorus pollution in aquatic systems. This study presents a novel aerogel with a high specific surface area (663.

View Article and Find Full Text PDF

In various applications, the pore structure of a porous medium must be controlled to facilitate heat and mass transfer, which considerably influence the system performance. Freeze-casting is a versatile technique for creating aligned pores; However, because of the complexity of the associated equipment and the energy inefficiency of liquid-nitrogen-based cooling in a room-temperature environment, limits scalability for industrial applications. This study is aimed at establishing a novel freeze-casting strategy with a simple mold design combining heat-conductive and insulating materials for long-range pore alignment via directional ice growth under deep-freezing conditions, rendering it feasible for large-scale production.

View Article and Find Full Text PDF

Ultralight and Flexible Subnanowire Aerogels for Intrinsically Hydrophobic Thermal Insulation.

ACS Appl Mater Interfaces

January 2025

School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, P. R. China.

Aerogels are regarded as the next generation of thermal insulators; however, conventional aerogels suffer from issues such as brittleness, low moisture resistance, and a complex production process. Subnanowires (SNWs) are emerging materials known for their exceptional flexibility, toughness, intrinsic hydrophobicity, and gelling capabilities, making them ideal building blocks for flexible, tough, hydrophobic, and thermally insulating aerogels. Herein, we present a simple and scalable strategy to construct SNW aerogels by freeze-drying hydroxyapatite (HAP) SNW dispersions in cyclohexane.

View Article and Find Full Text PDF

Penguin feather-inspired flexible aerogel composite films featuring ultra-low thermal conductivity and dielectric constant.

Mater Horiz

January 2025

State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, People's Republic of China.

Given extremely high porosity, aerogels have demonstrated remarkable advantages in serving as thermal insulation and wave-transparent materials. Unfortunately, their practical applications are greatly confined by their inherent fragility. The recent emergence of polymer aerogels presents an ideal platform for the development of flexible aerogel films.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!