Classifying Charge Carrier Interaction in Highly Compressed Elements and Silane.

Materials (Basel)

Department of Precision Metallurgy and Pressure Processing Technologies, M. N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, 18, S. Kovalevskoy Street, 620108 Ekaterinburg, Russia.

Published: August 2021

Since the pivotal experimental discovery of near-room-temperature superconductivity (NRTS) in highly compressed sulphur hydride by Drozdov et al. ( , , 73-76), more than a dozen binary and ternary hydrogen-rich phases exhibiting superconducting transitions above 100 K have been discovered to date. There is a widely accepted theoretical point of view that the primary mechanism governing the emergence of superconductivity in hydrogen-rich phases is the electron-phonon pairing. However, the recent analysis of experimental temperature-dependent resistance, (), in HS, LaH, PrH and BaH (Talantsev, , , accepted) showed that these compounds exhibit the dominance of non-electron-phonon charge carrier interactions and, thus, it is unlikely that the electron-phonon pairing is the primary mechanism for the emergence of superconductivity in these materials. Here, we use the same approach to reveal the charge carrier interaction in highly compressed lithium, black phosphorous, sulfur, and silane. We found that all these superconductors exhibit the dominance of non-electron-phonon charge carrier interaction. This explains the failure to demonstrate the high- values that are predicted for these materials by first-principles calculations which utilize the electron-phonon pairing as the mechanism for the emergence of their superconductivity. Our result implies that alternative pairing mechanisms (primarily the electron-electron retraction) should be tested within the first-principles calculations approach as possible mechanisms for the emergence of superconductivity in highly compressed lithium, black phosphorous, sulfur, and silane.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8347786PMC
http://dx.doi.org/10.3390/ma14154322DOI Listing

Publication Analysis

Top Keywords

charge carrier
16
highly compressed
16
emergence superconductivity
16
carrier interaction
12
electron-phonon pairing
12
interaction highly
8
hydrogen-rich phases
8
primary mechanism
8
exhibit dominance
8
dominance non-electron-phonon
8

Similar Publications

For moiré bilayer TMD superlattices, full-configuration-interaction (FCI) calculations are presented that take into account both the intra-moiré-quantum-dot (MQD) charge-carrier Coulombic interactions, as well as the crystal-field effect from the surrounding moiré pockets (inter-moiré-QD interactions). The effective computational embedding strategy introduced here allows for an FCI methodogy that enables the complete interpretation of the counterintuitive experimental observations reported recently in the context of moiré TMD superlattices at integer fillings ν=2 and 4. Two novel states of matter are reported: (i) a genuinely quantum-mechanical supercrystal of sliding Wigner molecules (WMs) for unstrained moiré TMD materials (when the crystal field is commensurate with the trilobal symmetry of the confining potential in each embedded MQD) and (ii) a supercrystal of pinned Wigner molecules when the crystal field is incommensurate with the trilobal symmetry or straining of the whole material is involved.

View Article and Find Full Text PDF

Evaluation of a nanostructured CpG-ODN/ascorbyl palmitate as a safe and effective adjuvant for anticrotalic PLA2 serum.

Trans R Soc Trop Med Hyg

January 2025

Conse jo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), CP3400 Corrientes, Argentina.

Background: The WHO states that antivenom is the only safe and effective treatment to neutralize snake venom. Snakebite antivenom typically involves horse hyperimmunization with crude venom and Freund's adjuvant.

Methods: In the current work, we analyzed the ascorbyl palmitate liquid crystal structure with snake protein or PLA2, the carrier charge capacity, and we evaluated the immune response induced by the enzyme P9a(Cdt-PLA2) formulated in a nanostructure using CpG-ODN, determining the titer of IgG antibodies.

View Article and Find Full Text PDF

Objective: Physical activity (PA) has been linked to reduced Alzheimer's disease (AD) risk. However, less is known about its effects in the AD preclinical stage. We aimed to investigate whether greater PA was associated with lower plasma biomarkers of AD pathology, neural injury, reactive astrocytes, and better cognition in individuals with autosomal-dominant AD due to the presenilin-1 E280A mutation who are virtually guaranteed to develop dementia.

View Article and Find Full Text PDF

Polymer-based herbicide nanocarriers have shown potential for increasing the herbicide efficacy and environmental safety. This study aimed to develop, characterize, and evaluate toxicity to target and nontarget organisms of natural-based polymeric nanosystems for glyphosate. Polymers such as chitosan (CS), zein (ZN), and lignin (LG) were used in the synthesis.

View Article and Find Full Text PDF

The simulation of ideal and non-ideal conditions using the SCAPS-1D simulator for novel structure Ag/FTO/CuBiO/GQD/Au was done for the first time. The recombination of charge carriers in CuBiO is an inherent problem due to very low hole mobility and polaron transport in the valence band. The in-depth analysis of the simulation result revealed that Graphene Quantum Dots (GQDs) can act as an appropriate hole transport layer (HTL) and can enhance hole transportation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!