The Elucidation of the Molecular Mechanism of the Extrusion Process.

Materials (Basel)

Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology Wrocław, University of Science and Technology, pl. Grunwaldzki 13, 50-377 Wrocław, Poland.

Published: July 2021

Extrusion is a popular method for producing homogenous population of unilamellar liposomes. The technique relies on forcing a lipid suspension through cylindrical pores in a polycarbonate membrane. The quantification of the extrusion and/or recalibration processes make possible the acquisition of experimental data, which can be correlated with the mechanical properties of the lipid bilayer. In this work, the force needed for the extrusion process was correlated with the mechanical properties of a lipid bilayer derived from other experiments. Measurements were performed using a home-made dedicated device capable of maintaining a stable volumetric flux of a liposome suspension through well-defined pores and to continuously measure the extrusion force. Based on the obtained results, the correlation between the lipid bilayer bending rigidity and extrusion force was derived. Specifically, it was found that the bending rigidity of liposomes formed from well-defined lipid mixtures agrees with data obtained by others using flicker-noise spectroscopy or micromanipulation. The other issue addressed in the presented studies was the identification of molecular mechanisms leading to the formation of unilamellar vesicles in the extrusion process. Finally, it was demonstrated that during the extrusion, lipids are not exchanged between vesicles, i.e., vesicles can divide but no membrane fusion or lipid exchange between bilayers was detected.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8348501PMC
http://dx.doi.org/10.3390/ma14154278DOI Listing

Publication Analysis

Top Keywords

extrusion process
12
lipid bilayer
12
extrusion
8
correlated mechanical
8
mechanical properties
8
properties lipid
8
extrusion force
8
bending rigidity
8
lipid
6
elucidation molecular
4

Similar Publications

Background: The gradual extrusion of water-soluble intracellular components (such as proteins) from microalgae after pulsed electric field (PEF) treatment is a well-documented phenomenon. This could be utilized in biorefinery applications with lipid extraction taking place after such an 'incubation' period, i.e.

View Article and Find Full Text PDF

Foaming ink for 3D-printing of ultralight and hyperelastic graphene architectures: Multiscale design and ultra-efficient electromagnetic interference shielding.

J Colloid Interface Sci

January 2025

School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, School of Advanced Manufacturing, Guangdong University of Technology, Jieyang 515200 China. Electronic address:

Extrusion-based printing of macroscopic architectures layer-by-layer offers new opportunities for constructing customized electromagnetic interference (EMI) shielding materials. However, current research primarily focuses on improving the printability of material inks by increasing contents and adding various modifiers, controllable construction of ultralight and robust macro-architectures with structural design at both macro- and micro-scales is still challenging. Herein, we develop a graphene oxide foaming ink enriched with air bubbles for direct-ink writing, enabling the creation of macroscopic graphene architectures with arbitrary geometries.

View Article and Find Full Text PDF

Recent studies have emphasized the modification of Insoluble Dietary Fiber (IDF) to enhance its physicochemical properties and functional performance. This study systematically examined the effects of ultrasonic treatment, microwave irradiation, high-temperature and high-pressure processing, and screw extrusion on the physicochemical characteristics, in vitro antioxidant activity, and adsorption capacities of High-Purity Insoluble Dietary Fiber (HPIDF) derived from black bean residues. Although these physical modifications did not alter the functional group composition or crystalline structure of HPIDF, they significantly enhanced its porosity, water-holding capacity (WHC), oil-holding capacity (OHC), and adsorption capacities for glucose, cholesterol, bile salts, and metal ions.

View Article and Find Full Text PDF

Time Code for multifunctional 3D printhead controls.

Nat Commun

January 2025

Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, MD, USA.

Direct Ink Writing, an extrusion-based 3D printing technique, has attracted growing interest due to its ability to process a broad range of materials and integrate multifunctional printheads with features such as shape-changing nozzles, in-situ curing, material switching, and material mixing. Despite these advancements, incorporating auxiliary controls into Geometry Code (G-Code), the standard programming language for these printers, remains challenging. G-Code's line-by-line execution requires auxiliary control commands to interrupt the print path motion, causing defects in the printed structure.

View Article and Find Full Text PDF

Advancing medication compounding: Use of a pharmaceutical 3D printer to auto-fill minoxidil capsules for dispensing to patients in a community pharmacy.

Int J Pharm

January 2025

Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; FABRX Artificial Intelligence, Carretera de Escairón, 14, Currelos (O Saviñao) CP 27543, Spain; FABRX Ltd., Henwood House, Henwood, Ashford, Kent TN24 8DH, UK; Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK. Electronic address:

Compounding medications in pharmacies is a common practice for patients with prescriptions that are not available commercially, but it is a laborious and error-prone task. The incorporation of emerging technologies to prepare personalised medication, such as 3D printing, has been delayed in smaller pharmacies due to concerns about potential workflow disruptions and learning curves associated with novel technologies. This study examines the use in a community pharmacy of a pharmaceutical 3D printer to auto-fill capsules and blisters using semisolid extrusion, incorporating an integrated quality control system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!