Malaysia is one of the largest palm oil producers in the world and its palm oil industry is predicted to generate a large amount of waste, which increases the need to modify it for sustainable reuse. The green geopolymers produced from industrial waste can be a potential substitute for cementitious binders. This type of polymer helps reduce dependency on cement, a material that causes environmental problems due to its high carbon emissions. Palm oil fuel ash (POFA) geopolymer has been widely investigated for its use as a sustainable construction material. However, there is still uncertainty regarding the total replacement of cement with POFA geopolymer as a binder. In this study, we examined the effects of different material design parameters on the performance of a POFA-based geopolymer as a building material product through iterations of mixture optimisation. The material assessed was a single raw precursor material (POFA) activated by an alkaline activator (a combination of sodium hydroxide and sodium silicate with constant concentration) and homogenised. We conducted a physical property test, compressive strength test, and chemical composition and microstructural analyses to evaluate the performance of the alkali-activated POFA geopolymer at 7 and 28 days. According to the results, the optimum parameters for the production of alkali-activated POFA paste binder are 0.6 liquid-to-solid ratio and 2.5 alkaline activator ratio. Our results show that the use of alkali-activated POFA geopolymer is technically feasible, offering a sustainable and environmentally friendly alternative for POFA disposal.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8347924PMC
http://dx.doi.org/10.3390/ma14154253DOI Listing

Publication Analysis

Top Keywords

palm oil
16
pofa geopolymer
16
alkaline activator
12
alkali-activated pofa
12
sodium silicate
8
sodium hydroxide
8
oil fuel
8
fuel ash
8
pofa
7
geopolymer
6

Similar Publications

Cerebral autosomal-dominant arteriopathy, subcortical infarcts, and leukoencephalopathy (CADASIL) is the most prevalent monogenic inherited cause of cerebral small-vessel disease. Despite its prevalence, there is currently no proven therapy to prevent or reverse the progression of the disease. This study aimed to characterize the functional integrity of long white matter tracts in CADASIL transgenic mice, both with and without focal white matter lesions in the corpus callosum added on, utilizing optical resting-state functional connectivity imaging alongside behavioral examinations.

View Article and Find Full Text PDF

Background: Postprandial lipemia (PPL) has been recognised as a cardiovascular disease risk factor. Appetite and PPL can be influenced by the length of saturated fatty acids (FAs). Thus, this study aims to investigate if different FA chain lengths have different impacts on appetite and PPL in healthy volunteers.

View Article and Find Full Text PDF

Oil palm smallholders and the road to certification: Insights from Indonesia.

J Environ Manage

January 2025

University of Göttingen, Department of Agricultural Economics and Rural Development, Platz der Göttinger Sieben 5, 37073, Göttingen, Germany. Electronic address:

Smallholder-managed oil palm plantations are a major driver of economic welfare and rural development. However, compared to industrial producers, smallholders are associated with lower farm productivity and disproportionately higher rates of illegal land clearing. Therefore, a balance must be struck between mitigating adverse externalities and strengthening favorable outcomes to ensure smallholders' sustainable integration into the palm oil industry.

View Article and Find Full Text PDF

Oil fields located in cold environments and deep-sea locations often face challenges with paraffin wax buildup in pipelines during long-distance crude oil transportation. Various strategies have been employed to address this issue, with chemical methods being the most effective and economical. However, traditional chemical inhibitors present problems due to their high toxicity and low biodegradability, leading to increased operational costs and environmental concerns.

View Article and Find Full Text PDF

To investigate the potential of activated carbon from palm kernel shell waste for Tc-radiolabeled nanocarbon aerosol, a new production technology for carbon-based Tc-radioaerosol from such a waste was developed. Treated-palm shell charcoal (t-PSC) was prepared by hydrothermal method to increase the surface area, followed by Tc radiolabelling optimization. The optimal Tc radiolabeling conditions resulted in an adsorption capacity of 21.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!