The aim of this study was to ascertain whether the combined action of metal nanoparticles (silver, copper, zinc oxide, iron oxide) would ensure the appropriate biocidal properties oflow-density polyethylene (LDPE) against pathogenic microorganisms. According to the research hypothesis, appropriately selected concentrations of the applied metal nanoparticles allow for a high level of biocidal activity of polymeric materials against both model and pathogenic bacterial strains (, , , , subsp. ) and fungi (, , , ), whilst ensuring the safety of use due to the lack of migration of particles to the surrounding environment. Studies have shown that adding 4% of a biocide containing Ag, Cu, ZnO, and FeO nanoparticles is the most optimal solution to reduce the number of , and by over 99%. The lowest effectiveness was observed against bacteria. As for , a higher biocide content did not significantly increase the antibacterial activity. The results showed a high efficiency of the applied biocide at a concentration of 2% against fungal strains. The high efficiency of the obtained biocidal results was influenced by the uniform dispersion of nanoparticles in the material and their low degree of agglomeration. Furthermore, a slight migration of components to the environment is the basis for further research in the field of the application of the developed materials in industry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8347296 | PMC |
http://dx.doi.org/10.3390/ma14154228 | DOI Listing |
Ind Eng Chem Res
January 2025
Department of Chemistry, Physics, and Materials Science, Fayetteville State University, Fayetteville, North Carolina 28301, United States.
An efficient Suzuki cross-coupling reaction under continuous flow conditions was developed utilizing an immobilized solid supported catalyst consisting of bimetallic nickel-palladium nanoparticles (Ni-Pd/MWCNTs). In this process, the reactants can be continuously pumped into a catalyst bed at a high flow rate of 0.6 mL/min and the temperature of 130 °C while the Suzuki products are recovered in high steady-state yields for prolonged continuous processing.
View Article and Find Full Text PDFHeliyon
January 2025
Institute of Metal Research (IMR), Chinese Academy of Science, Wenhua Road, Shenyang, China.
Recently, researchers have used silver nanoparticles (AgNPs) coupled with humic acid (HA) as antimicrobial agents. Herein, AgNPs were prepared and coupled with humic acid for their antimicrobial activities. The as-prepared AgNPs coupled with humic acid (HA) were characterized by an atomic force microscope (AFM), X-ray powder diffraction (XRD), zeta potential, zeta sizer, Fourier-transform infrared (FT-IR) spectroscopy, and UV-VIS spectrophotometer.
View Article and Find Full Text PDFChem Asian J
January 2025
Chulalongkorn University, Chemistry, THAILAND.
This research focuses on the selective detection of Hg2+ ions using hybrid nanosensors composed of rhodamine building blocks linked to polyamine units of varying chain lengths to produce Rho1-Rho4, which were subsequently conjugated with thioctic acid (RT1-RT4) and attached to the surface of gold nanoparticles to create hybrid nanosensors (GRT1-GRT4) designed for detecting heavy metals. The chemical structures, purity, morphology, and chemical composition were characterized through XRD, NMR, TEM, ATR-FTIR, and mass spectrometry. These hybrid nanosensors demonstrated excellent selectivity and sensitivity in colorimetric and fluorescence responses towards Hg2+, outperforming other metal ions.
View Article and Find Full Text PDFAnal Methods
January 2025
CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), G. B. Marg, Bhavnagar, 364 002, India.
In this study, magnesium-doped lithium manganese oxide nanoparticles were prepared through a solid-state reaction technique, and their surface was modified with mesoporous silica. The surface-modified material exhibited a significantly enhanced BET surface area from 5.791 to 66.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Fudan University, Department of Macromolecular Science, 2205 Songhu Rd, 200438, Shanghai, CHINA.
Nitrogen heterocyclic carbenes (NHCs) are emerging as effective substitutes for conventional thiol ligands in surface functionalization of nanoparticles (NPs), offering exceptional stability to NPs under harsh conditions. However, the highly reactive feature of NHCs limits their use in introducing chemically active groups onto the NP surface. Herein, we develop a general yet robust strategy for the efficient surface functionalization of NPs with copolymer ligands bearing various functional groups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!