Wire arc additive manufacturing is a metal additive manufacturing technique that allows the fabrication of large size components at a high deposition rate. During wire arc additive manufacturing, multi-layer deposition results in heat accumulation, which raises the preheat temperature of the previously built layer. This causes process instabilities, resulting in deviations from the desired dimensions and variations in material properties. In the present study, a systematic investigation is carried out by varying the interlayer delay from 20 to 80 s during wire arc additive manufacturing deposition of the wall structure. The effect of the interlayer delay on the density, geometry, microstructure and mechanical properties is investigated. An improvement in density, reduction in wall width and wall height and grain refinement are observed with an increase in the interlayer delay. The grain refinement results in an improvement in the micro-hardness and compression strength of the wall structure. In order to understand the effect of interlayer delay on the temperature distribution, numerical simulation is carried out and it is observed that the preheat temperature reduced with an increase in interlayer delay resulting in variation in geometry, microstructure and mechanical properties. The study paves the direction for tailoring the properties of wire arc additive manufacturing-built wall structures by controlling the interlayer delay period.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8347272 | PMC |
http://dx.doi.org/10.3390/ma14154187 | DOI Listing |
Phys Rev Lett
December 2024
Harish-Chandra Research Institute, A CI of Homi Bhabha National Institute, Chhatnag Road, Jhusi, Allahabad 211019, India.
Pump-probe response of the spin-orbit coupled Mott insulator Sr_{2}IrO_{4} reveals a rapid creation of low-energy optical weight and suppression of three-dimensional magnetic order on laser pumping. Postpump there is a quick reduction of the optical weight but a very slow recovery of the magnetic order-the difference is attributed to weak interlayer exchange in Sr_{2}IrO_{4} delaying the recovery of three-dimensional magnetic order. We suggest that the effect has a very different and more fundamental origin.
View Article and Find Full Text PDFEntropy (Basel)
October 2024
Institute of Geophysics, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam.
In this study, the topological properties of the shallow seismicity occurring in the area around the Lai Chau hydropower plant (Vietnam) are investigated by using visibility graph (VG) analysis, a well-known method to convert time series into networks or graphs. The relationship between the seismicity and reservoir water level was analyzed using Interlayer Mutual Information (IMI) and the Frobenius norm, both applied to the corresponding VG networks. IMI was used to assess the correlation between the two variables, while the Frobenius norm was employed to estimate the time delay between them.
View Article and Find Full Text PDFPLoS One
November 2024
Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.
Micromachines (Basel)
September 2024
Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA.
To ensure consistent performance of additively manufactured metal parts, it is advantageous to identify alloys that are robust to process variations. This paper investigates the effect of steel alloy composition on mechanical property robustness in laser-directed energy deposition (L-DED). In situ blending of ultra-high-strength low-alloy steel (UHSLA) and pure iron powders produced 10 compositions containing 10-100 wt% UHSLA.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2024
Nano Device Application Center, Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!