Study of Overprotective-Polarization of Steel Subjected to Cathodic Protection in Unsaturated Soil.

Materials (Basel)

Laboratory of Engineering Sciences for the Environment (LaSIE)-UMR 7356, University of La Rochelle/CNRS, 17000 La Rochelle, France.

Published: July 2021

Various electrochemical methods were used to understand the behavior of steel buried in unsaturated artificial soil in the presence of cathodic protection (CP) applied at polarization levels corresponding to correct CP or overprotection. Carbon steel coupons were buried for 90 days, and the steel/electrolyte interface was studied at various exposure times. The coupons remained at open circuit potential (OCP) for the first seven days before CP was applied at potentials of -1.0 and -1.2 V vs. Cu/CuSO for the remaining 83 days. Voltammetry revealed that the corrosion rate decreased from ~330 µm yr at OCP to ~7 µm yr for an applied potential of -1.0 V vs. Cu/CuSO. CP effectiveness increased with time due to the formation of a protective layer on the steel surface. Raman spectroscopy revealed that this layer mainly consisted of magnetite. EIS confirmed the progressive increase of the protective ability of the magnetite-rich layer. At -1.2 V vs. Cu/CuSO, the residual corrosion rate of steel fluctuated between 8 and 15 µm yr. EIS indicated that the protective ability of the magnetite-rich layer deteriorated after day 63. As water reduction proved significant at this potential, it is proposed that the released H bubbles damage the protective layer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8347940PMC
http://dx.doi.org/10.3390/ma14154123DOI Listing

Publication Analysis

Top Keywords

cathodic protection
8
-12 cu/cuso
8
corrosion rate
8
protective layer
8
protective ability
8
ability magnetite-rich
8
magnetite-rich layer
8
steel
5
layer
5
study overprotective-polarization
4

Similar Publications

Association between ESR1 and COL1A1 gene polymorphisms and skeletal fluorosis in Tibetan, Kazakh, Mongolian and Russian populations, China.

Environ Pollut

January 2025

Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, People's Republic of China; NHC Key Laboratory of Etiology and Epidemiology(Harbin Medical University); Joint Key Laboratory of Endemic Diseases(Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University); Center for Chronic Disease Prevention and Control, Harbin Medical University, Harbin, People's Republic of China. Electronic address:

Background: Skeletal fluorosis is a chronic metabolic bone disease caused by excessive accumulation of fluoride in the bones. Previous studies have found that when the intake of tea fluoride is similar, the prevalence of skeletal fluorosis varies greatly among different ethnic groups, which may be related to different genetic backgrounds. Single nucleotide polymorphisms (SNPs) of estrogen receptor 1 (ESR1) and collagen type 1 α1 (COL1A1) were strongly associated with bone metabolism as well as bone growth and development, but their association with the risk of skeletal fluorosis has not been reported.

View Article and Find Full Text PDF

Nickel-rich cobalt-free layered oxide cathode with Ni contents no fewer than 90 % has received extensive attention in the field of lithium-ion batteries due to its excellent specific capacity and low cost, but serious capacity degeneration induced by structural deterioration and interfacial instability greatly hamper their further development. Herein, the Sb-modified LiNiMnO materials from the interface to interior have been designed and fabricated to overcome the above issues. On the one hand, the introduction of Sb-ion in interior of grains can generate Sb-O chemical bond with high dissociation energy, which contributes to reinforce the chemical and structural stability.

View Article and Find Full Text PDF

pH remains the most important chemical parameter and must be monitored for positive outcomes in areas as different as cheese making and fertilisation (IVF). Where blood gas analysers enable patient monitoring, starter cultures in cheese manufacturing are still monitored using conventional pH electrodes. Here, we present a homogeneous multiwell plate sensor for monitoring pH, with the same sensitivity as a pH electrode.

View Article and Find Full Text PDF

Regulation of Extra Li Inventory in Anode-Free Lithium Metal Batteries by Li-Rich Layered Oxide Cathode Materials.

Nano Lett

January 2025

Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China.

Li-rich layered oxide (LRO) cathode material is utilized in anode-free Li metal batteries to provide extra Li inventory, compensating for the constant Li loss during cycling. The Li compensation mechanism of LRO in the anode-free system is elucidated by exploring the reversible/irreversible Li consumption behaviors. Moreover, the relationship between cathode areal capacity, Li inventory, and the cycling performance of the Cu||LRO cell is quantitatively analyzed.

View Article and Find Full Text PDF

Study Objectives: Sleep spindles, defining electroencephalographic oscillations of nonrapid eye movement (NREM) stage 2 sleep (N2), mediate sleep-dependent memory consolidation (SDMC). Spindles are also thought to protect sleep continuity by suppressing thalamocortical sensory relay. Schizophrenia is characterized by spindle deficits and a correlated reduction of SDMC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!